Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114276
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPaat, H-
dc.contributorShen, G-
dc.date.accessioned2025-07-22T01:34:10Z-
dc.date.available2025-07-22T01:34:10Z-
dc.identifier.isbn979-8-4007-1426-9-
dc.identifier.urihttp://hdl.handle.net/10397/114276-
dc.descriptionAAMAS '25: International Conference on Autonomous Agents and Multiagent Systems, Detroit MI, USA, May 19 - 23, 2025en_US
dc.language.isoenen_US
dc.publisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)en_US
dc.rightsThis work is licensed under a Creative Commons Attribution International 4.0 License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rights© 2025 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org).en_US
dc.rightsThe following publication Paat, H., & Shen, G. (2025). Conformal Set-based Human-AI Complementarity with Multiple Experts Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems, Detroit, MI, USA is available at https://dl.acm.org/doi/10.5555/3709347.3743792.en_US
dc.subjectConformal prediction setsen_US
dc.subjectConfusion Matrixen_US
dc.subjectHuman-AI interactionen_US
dc.subjectHuman-AI teamen_US
dc.subjectMulticlass Classicationen_US
dc.subjectMultiple expertsen_US
dc.subjectPrediction setsen_US
dc.subjectSubset Selectionen_US
dc.titleConformal set-based human-AI complementarity with multiple expertsen_US
dc.typeConference Paperen_US
dc.identifier.spage1576-
dc.identifier.epage1585-
dc.identifier.doi10.5555/3709347.3743792-
dcterms.abstractDecision support systems are designed to assist human experts in classification tasks by providing conformal prediction sets derived from a pre-trained model. This human-AI collaboration has demonstrated enhanced classification performance compared to using either the model or the expert independently. In this study, we focus on the selection of instance-specific experts from a pool of multiple human experts, contrasting it with existing research that typically focuses on single-expert scenarios. We characterize the conditions under which multiple experts can benefit from the conformal sets. With the insight that only certain experts may be relevant for each instance, we explore the problem of subset selection and introduce a greedy algorithm that utilizes conformal sets to identify the subset of expert predictions that will be used in classifying an instance. This approach is shown to yield better performance compared to naive methods for human subset selection. Based on real expert predictions from the CIFAR-10H and ImageNet-16H datasets, our simulation study indicates that our proposed greedy algorithm achieves near-optimal subsets, resulting in improved classification performance among multiple experts.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn AAMAS ’25: Proceedings of the 24th International Conference onAutonomous Agents and Multiagent Systems, p. 1576-1585-
dcterms.issued2025-
dc.relation.conferenceInternational Conference on Autonomous Agents and Multiagent Systems [AAMAS]-
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3917ben_US
dc.identifier.SubFormID51648en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3709347.3743792.pdf2.87 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.