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ABSTRACT
Decision support systems are designed to assist human experts
in classi�cation tasks by providing conformal prediction sets de-
rived from a pre-trained model. This human-AI collaboration has
demonstrated enhanced classi�cation performance compared to
using either the model or the expert independently. In this study,
we focus on the selection of instance-speci�c experts from a pool
of multiple human experts, contrasting it with existing research
that typically focuses on single-expert scenarios. We characterize
the conditions under which multiple experts can bene�t from the
conformal sets. With the insight that only certain experts may
be relevant for each instance, we explore the problem of subset
selection and introduce a greedy algorithm that utilizes confor-
mal sets to identify the subset of expert predictions that will be
used in classifying an instance. This approach is shown to yield
better performance compared to naive methods for human subset
selection. Based on real expert predictions from the CIFAR-10H
and ImageNet-16H datasets, our simulation study indicates that our
proposed greedy algorithm achieves near-optimal subsets, resulting
in improved classi�cation performance among multiple experts.
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1 INTRODUCTION
In recent years, human experts have increasingly relied on AI-based
decision support systems to make informed choices in high-risk
�elds such as medicine, drug discovery, �nance, law, and science
[10, 13, 21, 26, 27]. Although much existing research focuses on
developing sophisticated algorithms, it is essential to advance the
paradigm of AI-assisted decision making, where humans and AI
collaborate to improve accuracy. Given the impressive performance
of modernmachine learningmodels, it is crucial for humans to learn
how to e�ectively leverage these tools for important real-world
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tasks. This collaboration, known as human-AI complementarity, can
lead to better outcomes than when humans and machines operate
independently.

Previous studies aim to achieve human-AI complementarity by
suggesting that decision support systems should help individu-
als identify situations where AI o�ers substantial advantages and
provide explanations that clarify the reasoning behind model pre-
dictions [20, 22, 37, 47, 49]. This assistance often involves examining
the factors that in�uence trust [31, 44, 50, 52]. However, these inves-
tigations have yielded inconclusive results, leading to uncertainty
about how experts can mitigate the risk of developing misplaced
trust in AI systems. A study conducted by Straitouri et al. [43]
developed a system designed to operate without requiring experts
to discern when and how to trust AI, thus shifting the focus of the
human-AI model from factors such as calibration and explanation.
This system generates a set of label predictions, referred to as a
prediction set, from which a human expert selects the most appro-
priate label. In their proposed framework, the construction of these
prediction sets is based on conformal predictors [2]. Furthermore,
Toni et al. [45] suggest that the conformal predictor may not be the
optimal set-valued predictor in this kind of system. They propose
a framework for constructing optimal prediction sets that enable
human experts to achieve the highest possible accuracy. However,
both of these studies are limited in scope, focusing solely on a
single expert. We argue that this limitation restricts the potential
accuracy and practicality of combined human-AI models. In prac-
tice, decision-making typically comes from multiple experts who
engage with decision support systems. Our goal is to establish a
framework for human-AI complementarity that involves multiple
human experts working with a decision support system. For each
instance, we propose a human subset selection algorithm and de-
sign a framework that incorporates predictions from this subset
of multiple experts to generate �nal predictions in multiclass clas-
si�cation tasks, thereby enhancing decision-making outcomes in
complex scenarios.

Our contributions. We explore the scenario of multiple human
experts collaborating with a decision support system that o�ers a
set of label predictions and requires each expert to select from this
set during inference. We begin by establishing a lower bound on
the accuracy of a system that incorporates the experts’ predictions
that are chosen from the conformal sets. Then we identify the con-
ditions that allow these experts to e�ectively utilize conformal sets
instead of relying on the entire label space. We then proceed with
the perspective of subset selection of human experts, asking which
subset of experts should be chosen to classify each data sample.
Inspired by these �ndings, we propose a greedy algorithm for se-
lecting a subset of human experts for each instance, leveraging the
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Figure 1: Illustration of the proposed greedy subset selection algorithm that operates within a multiple expert framework
utilizing conformal sets during inference. Initially, a pre-trained classi�er computes scores for the conformal predictor. For a
given test image, the greedy selection algorithm identi�es a subset of human experts. Each selected expert then makes their
decision from a narrowed set of options. The �nal prediction is determined through a combination policy, typically employing
a majority decision rule to merge the predictions from multiple experts.

conformal prediction set to attain near-optimal classi�cation per-
formance. Intuitively, the goal is to favor human experts who, even
without prior knowledge of the conformal set, are more inclined
to select elements from within that set. This, however, assumes
that we understand the likelihood of each expert choosing speci�c
classes based on the true class1.

Finally, we validate the e�ectiveness of our approach through
simulation studies using real expert predictions on the CIFAR-
10H and Imagenet-16H datasets on several multiclass classi�cation
tasks. We demonstrate that, for varying numbers of human experts,
our proposed greedy selection algorithm consistently outperforms
naive approaches of choosing human subsets, such as selecting
random subset of humans or choosing the subsets that favor the
majority’s prediction. This suggests that a strategic human expert
selection process can improve classi�cation accuracy. Moreover, we
also demonstrate that our approach outperforms subset selection
based on top-: set predictors where the top-: sets are the basis
for the selection of human subsets. We also show that even as we
increase the number of experts, the proposed algorithm is still use-
ful for selecting the appropriate human experts for each instance.
Figure 1 shows the general illustration of the proposed framework.

1We achieve this through the confusion matrix for an expert, which illustrates how an
instance is categorized by human experts into di�erent classes given the true label.
The conformal set narrows the possible labels for a human, and the confusion matrix
is important to assess the relative importance of each label within the conformal set,
excluding irrelevant labels.

2 RELATEDWORKS
In literature, we have seen the emergence of methods that both uti-
lize AI and human expert decisions in prediction tasks to leverage
their respective strengths – one such area is the development of
classi�ers that perform predictions to some samples and rely on
the human experts for the remaining ones through a triage policy
[4, 5, 9, 12, 34, 36, 39, 46]. One common approach involves learning
a binary classi�er that defers instances with low model con�dence
to humans [7, 18]. A class of algorithms known as "learning to de-
fer" (L2D) focuses on training models that adapt to human experts
by learning when to either make a prediction themselves or defer
the decision to the experts. L2D approaches have been extensively
researched [11, 17, 33] and have been adapted for scenarios involv-
ing multiple human experts [16, 24, 29, 30]. However, a notable
limitation of this body of work is that AI models tend to excel
only in handling instances with high con�dence, which restricts
their generalization capabilities across all instances. More relevant
to our study, Babbar et al. [3] propose decision support systems
that utilize prediction sets. Unlike their approach, however, our
pre-trained classi�er assists human experts in solving classi�cation
tasks by suggesting prediction sets from which the selected experts
can select labels for each data sample during inference.

There is a substantial body of research focused on set-valued
predictors, which aim to develop models that produce a set of label
values known as a prediction set [6]. In several studies on cau-
tious or reliable classi�cation [28, 32, 35], the model-generated
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set-valued predictions provide a way to understand the uncertainty
in the model’s predictions. Recent works have explored decision
support systems that utilize prediction sets to assist human ex-
perts [3, 8, 43, 45, 51], demonstrating that set-valued predictors
can enhance the performance of human experts in prediction tasks.
Notably, conformal predictors—a type of set-valued predictor with
distribution-free guarantees—have shown promise in this context.
While the studies by [43, 45] are closely related to our work, we
speci�cally focus on scenarios involving multiple experts, contrast-
ing their single-expert setting.

Another line of research [23, 41] enhances classi�cation perfor-
mance by directly integrating human predictions with the output
probabilities of a pre-trained classi�er during inference. In this
framework, data samples are not deferred to either the human or the
model; instead, predictions are made through amathematical combi-
nation of the human label and the classi�er’s probabilities. Kerrigan
et al. [23] combine the probabilistic outputs of an AI model with
human class-level outputs to improve the accuracy of the human-AI
collaboration. More closely related to our work, Singh et al. [41]
propose a greedy algorithm that incorporates class-level outputs
from multiple human experts alongside the probabilistic outputs of
a pre-trained classi�er. Their approach identi�es the optimal subset
of workers for a task, enhancing the combined human-AI decision
model. Similarly, we also view multiple expert collaboration as a
subset selection problem; however, our focus is on selecting hu-
man subsets that will perform classi�cation based on knowledge of
conformal prediction sets.

3 PRELIMINARY
3.1 Problem Formulation
In our setting for human-AI multiclass classi�cation tasks, a set
of ⌘ human experts H aims to predict the corresponding label
. 2 Y = {1, ...,=} from the feature vector- 2 X, given access to an
automated decision support system C : X ! 2Y that predicts a set
of potential labels C(- ) ✓ Y. Here, human experts’ predictions for
the label of- are� (- ) = {�8 (- )}⌘8=1 where�8 (- ) 2 Y = {1, ...,=}
and the system C is usually a conformal predictor [1, 48], which
helps human experts by narrowing the scope of prediction. The
system C established based on a pre-trained classi�er 5̂ : X !
[0, 1] |Y | , where 5̂ (- ) is the normalized probability vector of the
prediction on- and C(- ) is determined based on the outputs scores
5̂ (- ). Given the system C, our objective is to develop a framework
to select a subset S(- ) from human experts H .

Similar to Straitouri et al. [43], the system requires that the
�nal prediction of each expert �8 (- ) 2 Y be an element of the
narrowed set C(- ). Multiple human predictions {�8 (- )}82S(- )
form the basis for generating the �nal experts prediction .̂ .

Ideally, we expect the designed framework to bene�t from the
collaborative predictions of experts in subset S(- ) in such a way
that:
P[.̂ = . ; C|� ,. 2 C(- ) ] � P[�8 = . ; C|. 2 C(- ) ] � P[�8 = . ;Y]

for any 8 2 {1, ...,⌘} where P[.̂ = . ;C|� ,. 2 C(- )] indicates the
success probability of the subset S(- ) of multiple experts who pre-
dicts a class from the narrowed subset C(- ), and P[�8 = . ;C|. 2
C(- )] indicates the success probability of the 8th single expert

who chooses from the narrowed options C(- ). Subset selection
of human experts arises from the intuition that within a team of
experts, diverse perspectives may exist. Hence, it becomes nec-
essary to choose a speci�c subset S(- ) for classi�cation in any
given instance. One might instinctively favor selecting the subset
S(- ) = H and employing a majority decision rule to get a �nal
prediction. However, this approach may not be the most e�ective
option, as we will show later.

3.2 Conformal Prediction
Given a calibration dataset ⇡cal = (G8 ,~8 );8=1 and a test sample
(GC4BC ,~C4BC ), conformal prediction aims to construct a prediction
set C based on ⇡cal such that the marginal coverage at a user-
speci�ed tolerance level U 2 [0, 1] is satis�ed, i.e.

P[~C4BC 2 C(GC4BC )] � 1 � U . (1)

Constructing a conformal predictor usually requires calculating
the conformal score B : X ⇥ Y ! R by B (G8 ,~8 ) = 1 � 5̂~8 (G8 ) on
each sample, where 5̂ denotes a pre-trained classi�er and 5̂~8 (G8 )
denotes the predicted probability for label ~8 given G8 . A lower
conformal score B (G8 ,~8 ) means better agreement between the input
G8 and the label ~8 . While a conformal score is close to one implies
the pre-trained classi�er is signi�cantly incorrect on G8 . Let @̂U be
the empirical d(; + 1) (1 � U)e-th quantile of the conformal scores
B (G1,~1), . . . , B (G; ,~; ). Then the conformal prediction set ⇠ (GC4BC )
is constructed by ⇠ (GC4BC ) = {~ : B (GC4BC ,~)  @̂U }. Note that the
constructed set⇠ (GC4BC ) can be established based on any pre-trained
classi�er 5̂ without relying on any distributional assumptions about
the data [48]. One can show that, conditioned on the calibration set
Dcal, the probability of the true label ~C4BC belonging to the subset
C(GC4BC ) is guaranteed at level (1 � U) [1].

4 UTILIZING CONFORMAL PREDICTION SETS
FOR THE SELECTION OF HUMAN SUBSETS

The multiple experts subset selection problem mathematically in-
volves identifying a speci�c subset of human experts from a larger
set. Let DC4BC = {(G8 ,~8 )}C8=1 denote the testing set. Given any
test sample (G,~) in the test set DC4BC , the goal is to �nd a sub-
set S(G) ✓ H with �nal expert predictions {�8 (G)}8=1,..., |S (G ) |
that maximizes the experts’ conditional success probability P[.̂ =
~;C|� ,~ 2 C(G)] where .̂ = c ({�8 (G)}8=1,..., |S (G ) | ) is the combi-
nation of the selected experts ’ prediction based on a given combi-
nation method or decision rule c . This can be expressed as follows:

max
S(G )✓H

P[c ({�8 (G)}8=1,..., |S (G ) | ) = ~;C|� ,~ 2 C(G)].

Note that several naive selection methods for forming subsets
exist in this case. We can choose the subset S(G) to be a random
subset ofH of �xed size W < ⌘ where ⌘ is the size ofH . The subset
S(G) can also be chosen to be of size 1, containing only the best-
performing expert in the teamH . Furthermore, the subsetS(G) can
be chosen as the whole expert team H . However, as we will show
in the simulation study, these naive approaches to select subsets of
humans are not guaranteed to perform the best during inference.

In what follows, our goal is to develop a framework to select
subsets of experts using the knowledge of the conformal set and
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show, theoretically and empirically, that it yields better perfor-
mance than naive approaches. We �rst discuss a formulation of the
expert’s conditional success probability in the context of multiple
expert predictions. To establish the theoretical results, we start by
considering the entire team of experts. For a feature vector G , let
{?8 }⌘8=1 be an observation or instantiations of the random variables
� (G) = {�8 (G)}⌘8=1. In combining multiple human experts’ predic-
tions given the conformal set, we assume independence between
human predictions. Using the Bayes rule, we can get the following
relationship:

P[.̂ = ~ |� ,~ 2 C(G)] / P[.̂ = ~ |~ 2 C(G)] ⇥÷
82 [⌘]

P[�8 = ~ |.̂ ,~ 2 C(G)] . (2)

Similar to Straitouri et al. [43], the expert’s success probability
P[.̂ = ~ |� ,~ 2 C(G)] is estimated by utilizing the multinomial
logit model. For a given sample (G,~) and subset C(G), we assume
that the expert’s conditional success probability can be estimated
as follows:

P[.̂ = ~ |� ,~ 2 C(G)] =
÷
82 [⌘]

⇥8
~?8 =

÷
82 [⌘]

4`
8
~?8

Õ
~0 2C(G ) 4

`8
~0?8

(3)

where `8~?8 denotes the preference of the expert 8 for the label
value ?8 2 Y, given that the true label is ~. We set the param-
eters `8~?8 = log⇠8

~?8 where we assume access to a confusion
matrix ⇠ of the expert predictions in the multiclass classi�cation
task. The confusion matrix is estimated based on real expert pre-
dictions using maximum likelihood estimation. More speci�cally,
⇠ = [⇠~~0 ]~,~0 2Y , where ⇠~~0 = P[.̂ = ~0;Y|. = ~].

To determine the improvement in the classi�cation performance
of the framework when we have multiple human expert predictions
and knowledge of the conformal sets, we derive a lower bound on
the accuracy of the framework (see the proof in Appendix A.1).

LEMMA1. Given⌘ human expert predictions� = [?1, ?2, . . . , ?⌘],
conformal set C with tolerance level U , and the 8th expert’s condi-
tional success probability ⇥8 , the lower bound on the accuracy of
the combined framework is given as

E[�({.̂ = ~} \ {~ 2 C})] � P[
÷
82 [⌘]

⇥8
~?8

1 �⇥8
~?8

> 1] · (1�U) . (4)

In the following theoretical result, we demonstrate that, in the
approach that uses predictions from multiple experts, utilizing a
conformal prediction set C within the combination framework re-
sults in a tighter lower bound than that derived from considering
the entire label space Y (as established in Lemma 4.1 of Singh et al.
[41]), given certain assumptions (see the proof in Appendix A.2).

LEMMA 2. Let n =
Œ

82 [⌘]

⇥8
~?8

1 �⇥8
~?8

� Œ
82 [⌘]

⇠8
~?8

1 �⇠8
~?8

. Assuming

n > 1 and U = 0, the combination framework of multiple human
expert predictions that utilizes a conformal set achieves a tighter
lower bound on accuracy,

P[
÷
82 [⌘]

⇠8
~?8

1 �⇠8
~?8

>
1 � 5̂~

5̂~
]  P[

÷
82 [⌘]

⇥8
~?8~

1 �⇥8
~?8

> 1] . (5)

Designing a Subset Selection Framework. Lemma 2 demon-
strates the advantage of incorporating the conformal sets C into the
combination framework of multiple expert predictions. Motivated
by these theoretical results, we describe a framework for selecting
a subset of humans S(G) instead of all humans H for each test
sample. For the task of human subset selection, let ?̂82 denote the
initial prediction of the expert 8 . Following the same intuition as
Algorithm 1 in Singh et al. [41], the goal is to select a subset such
that the derived lower bound (in Equation 7) is maximized. We
maximize the left probability term in the lower bound of Lemma 1.
Consider that the term⇥8

~?̂8
/(1�⇥8

~?̂8
) is greater than 1 if and only

if ⇥8
~?̂8

> 0.50. Hence, to maximize the product of these terms, we
choose only the corresponding human predictions that satisfy this
constraint. However, the ground truth label ~ is obviously required
to maximize this term in Lemma 1. Since we do not have access to
~ during test, we choose a pseudo label ~⇤ and de�ne it to be the
class that maximizes the probability in the derived lower bound
(Equation 7). Although similar in intuition as in Singh et al. [41],
we note that, instead of choosing from the full class of labelsY, we
choose the pseudo label from the conformal set C(G). Thus, given
the pseudo label ~⇤, we select the pseudo-optimal human subset as
follows:

S(G)⇤ = argmax
S(G )

(
÷

82S(G )

⇥8
~⇤?̂8

1 �⇥8
~⇤?̂8

) . (6)

We emphasize that the pseudo label~⇤ is in the conformal set, that is,
~⇤ 2 C(G). Moreover, we only consider the human predicted labels
?̂8 ’s that are in the conformal set. In addition to excluding humans
with corresponding values ⇥8

~?̂8
of at most 0.50, knowledge of the

conformal set also eliminates any human whose initial predicted
label is not in the set.

In Algorithm 1, we present the overall greedy humans subset
selection method3 based on the conformal set. Assume that the
worst-case (or maximum) size of any conformal set is 2 . Moreover,
we assume that the algorithm has access to ⇥, which is calcu-
lated based on the confusion matrix ⇠ by considering only the
probabilities of the classes present in C(G) and normalizing these
probabilities row-wise, as in Eq. 3. The algorithm then calculates
⇥8
:?8

/(1�⇥8
:?8

) for all human predictions ?8 and classes : 2 C(G),
which requires O(⌘2) steps. Then it calculates the product termŒ

82H ⇥8
:?8

/(1 �⇥8
:?8

) but only for each : 2 C and when ?8 2 C.
It chooses the pseudo label that maximizes this product term as ~⇤.
Calculation of the product term again takes O(⌘2) steps and pseudo
2We note that for the subset selection of humans, all experts make initial predictions
which are not necessarily in the conformal set. The intuition is to utilize the conformal
prediction sets from the decision support system C for additional guidance in selecting
the appropriate human experts. However, during inference, the selected human experts
choose their �nal prediction from the conformal set.
3The proposed algorithm is a modi�ed version of the one introduced by Singh et al.
[41], where we focus on the set C(G ) rather than the entire label space Y. In our
simulation study, we will also present results using the top-: sets generated by 5̂
instead of the conformal sets C(G ) for human subset selection.
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label calculation needs O(2) steps. Finally, given ~⇤, it selects hu-
man subsets that satis�es⇥8

~⇤?8
/(1�⇥8

~⇤?8
) > 1, which needs O(⌘)

steps. Thus, the overall time complexity is O(⌘2), indicating that
the algorithm’s performance scales linearly with both the number
of humans ⌘ and the size of the conformal set 2 .

Algorithm 1 Greedy Selection of Humans based on Conformal
Sets C(G)
Require: ⌘,=, 2 2 N
Require: conformal set of indices C(G)
Require: = ⇥ = matrices ⇥8 , 1  8  ⌘
Require: initial predictions ?̂8 (G), 1  8  ⌘
1: for 8 = 1 to ⌘ do
2: for : = 1 to 2 do
3: A  ⇥8

C(G ): ?̂8 (G )
4: B  1 �⇥8

C(G ): ?̂8 (G )
5: � [8] [:]  A

B
6: end for
7: end for
8: for : = 1 to 2 do
9: ( [:]  1
10: for 8 = 1 to ⌘ do
11: if � [8] [:] > 1 then
12: ( [:]  ( [:] ⇥ � [8] [:]
13: end if
14: end for
15: end for
16: :⇤  argmax1:2 ( [:]
17: ~⇤  C(G):⇤
18: (⇤  {1  8  ⌘ | � [8] [:⇤] > 1}

Remarks. Note that to maximize the lower bound, we can set
the user-speci�ed tolerance level U ⇡ 0. However, this may result
in prediction sets that cover all classes, rendering them useless and
uninformative for practical decision-making. That being noted, in
our context—where a classi�er is employed in a human-AI collabo-
rative environment—we assume that the classi�er chosen for such
high-risk tasks has high predictive accuracy and is generally con�-
dent in its predictions. Moreover, we assume that the calibration
data are well distributed across the classes. In the simulation study
where we use accurate pre-trained models and well-distributed
calibration data, we achieve a low average set size even though we
set a low tolerance level U , which results in nearly 100% coverage.

Naive subset selection methods. Several naive approaches to
human subset selection exist. One such method involves setting
S(G) = H , meaning all humans are employed for each data sample,
followed by a combination method c that applies a majority deci-
sion rule4. In our simulation study, we refer to this approach as "ALL
HUMANS." Another method involves selecting a random subset
S(G) from the set of human experts H , ensuring that the average
size of these human subsets aligns closely with the average subset
size derived from our proposed greedy approach. This approach

4Note that we chose the combination method c to be the majority decision rule for
simplicity. For future work, other combination frameworks can be experimented with.

also utilizes a majority decision rule and is labeled "RANDOM SUB-
SET" in our simulations. Additionally, we employ a greedy selection
method as described in Algorithm 1, which focuses on the top-:
prediction sets for each instance. The top-: classes are determined
by the output scores of the pre-trained classi�er 5̂ . Instead of using
conformal sets C for human subset selection, this method relies on
the top-: prediction sets, while still applying the majority decision
rule as the combination method c . In our simulations, we experi-
ment with various values of : and refer to this approach as "TOP-: ."
It is important to note that for both "ALL HUMANS" and "RAN-
DOM SUBSET," the selected humans are required to make their
�nal predictions based on conformal sets. In contrast, for "TOP-: ,"
the selected humans must derive their �nal predictions from the
top-: prediction sets rather than from conformal sets.

5 EXPERIMENTS ON CIFAR-10H DATASET
In this section, we perform experiments using a dataset of natural
images with real expert predictions for a multiclass classi�cation
task. We utilize several accurate deep neural network classi�ers 5̂ to
compute conformal scores for generating conformal sets, following
methodologies similar to those in prior research [43]. Our proposed
algorithm is benchmarked against naive subset selection methods
and previous human-AI combination approaches that consider both
single and multiple experts. Additionally, we compare our results
with top-: set-valued predictor baselines. We have included the
detailed signi�cance values for each experiment in Appendix B.1.

This simulation study utilizes the (estimated) confusion matrix
derived from real expert predictions for the multiclass classi�cation
task, along with the multinomial logit model de�ned in Eq. 3, to
evaluate our system’s performance—consistent with �ndings from
previous studies [43]. After selecting the subset of humans, we
apply a combination method c , which follows a majority decision
rule to determine the �nal outcome.

5.1 Experimental Setup
We conduct experiments on the CIFAR-10H dataset [38], which
comprises 10,000 natural images sourced from the CIFAR-10 test
set [25]. Each image belongs to one of= = 10 classes and includes ap-
proximately 50 expert predictions. For this dataset, we utilize three
widely recognized deep learning models: DenseNet [19], ResNet
[14], and PreResNet [15], as similarly employed in [43]. We split
the dataset into three subsets: calibration, estimation, and test set.
In our classi�cation tasks, we measure test data accuracy (empirical
success probability). Additionally, in frameworks using conformal
sets5, we calculate average set sizes.

5.2 Comparison with Naive Approaches
In Figure 2, we compare the empirical success probability P[.̂ =
. ;C|� ] on the test data for our proposed greedy selection algo-
rithm with naive methods, such as randomly choosing subsets of
humans of average size g (the average subset size of our greedy
selection approach) and selecting all humans followed by a majority
decision rule. We also visualize the results for the best single human

5In the simulation study, the tolerance levels U are set at 0.10%, 0.07%, 0.05%, 0.04%, and
0.03% for calibration data sizes ; of 1,000, 1,500, 2,000, 2,500, and 3,000, respectively.
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Table 1: Empirical success probability (in %) achieved by
our conformal multi-expert approach during test using
the greedy selection algorithm using three accurate neural
network-based pre-trained classi�ers and �ve multiple ex-
perts (⌘ = 5) in comparison with previous baselines on the
CIFAR-10H dataset. The single expert’s empirical success
probability at solving the (original)multiclass task is⇡ 95.24%.
The calibration and estimation sets each have a size of 1,000.
The values are averaged over 10 runs.

MODEL NAME DENSENET RESNET PRERESNET

Pre-trained Model Alone 96.29 ± 0.09 92.70 ± 0.20 94.41 ± 0.12
SINGLE EXPERT APPROACHES
Kerrigan et al. [23] (MAP temp. scal.) 97.81 ± 0.25 97.22 ± 0.40 97.56 ± 0.36
Straitouri et al. [43] 97.70 ± 0.09 96.63 ± 0.13 97.05 ± 0.18
MULTIPLE EXPERT APPROACHES
Singh et al. [41] (Greedy algorithm) 95.15 ± 0.22 95.18 ± 0.21 95.25 ± 0.20
Singh et al. [41] (Mode approach) 97.93 ± 0.13 97.23 ± 0.19 97.48 ± 0.16
Proposed Greedy Selection Method 98.48 ± 0.22 98.48 ± 0.15 98.10 ± 0.38

performance and the pre-trained model. While the all-human ap-
proach re�ects the intuition to favor majority decisions, leading to
high empirical success probabilities, it doesn’t always yield the best
outcomes. In contrast, our greedy algorithm based on the conformal
set demonstrates superior e�ectiveness in selecting human subsets.

5.3 Comparison with Top-: Set-Valued
Predictors

Figure 3 compares our conformal multi-expert method, which uses
a greedy algorithm for selecting human subsets, with a top-: set
predictor framework that also employs a greedy selection approach
based on the top-: sets. Our method shows a higher empirical
success probability.

5.4 Comparison with Human-AI Combination
Approaches

In Table 1, we compare the empirical success probability of our
conformal-based greedy algorithm with existing methods that in-
tegrate pre-trained classi�er outputs and human predictions. The
�ndings reveal two key insights: multi-expert collaboration yields
a higher success probability than relying on a single expert, and
our greedy algorithm e�ectively selects human subsets for classi�-
cation. Notably, even with a limited set of options, our approach
surpasses previous baselines that allowed full label access for hu-
mans, demonstrating the conformal predictor’s ability to identify
meaningful classes for each instance.

6 EXPERIMENTS ON IMAGENET-16H
DATASET

In this section, we conduct experiments using a di�erent dataset of
natural images that includes real expert predictions and features a
greater number of classes. For the pretrained models 5̂ , we utilize
the VGG19 deep neural network classi�er, as provided by Steyvers
et al. [42], which has been �ne-tuned over 10 epochs. We assess the
performance of our proposed greedy subset selection algorithm by

comparing it to naivemethods for human subset selection. Addition-
ally, we evaluate our approach against top-: set-valued predictors
that implement a modi�ed greedy strategy for selecting human
subsets based on the top-: set. Detailed signi�cance values for all
experiments can be found in Appendix B.2.

6.1 Experimental Setup
We experiment with the ImageNet-16H dataset [42], which com-
prises 1,200 unique images derived from a subset of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 database
[40]. This dataset includes approximately six predictions made by
human experts for each image. Each image can be classi�ed into
one of the = = 16 categories based on separate human annotations.
To increase the di�culty of the annotations for both humans and
classi�ers, the images are distorted using spatial frequency phase
noise with a frequency ofl = 80Additionally, we randomly divided
the images into three subsets: the calibration set, estimation set,
and the test set. Typically, these subsets contain 240 images each
for the calibration sets and estimation sets, and 720 images for the
test set, unless stated otherwise in the experimental results. We
use the calibration set6 to compute the conformal scores necessary
for the conformal set predictor. Then we utilize the estimation set
(together with the calibration set) to estimate the human confusion
matrix. Finally, we utilize the test set to assess the empirical suc-
cess probability of the experts as applied in various approaches. To
illustrate the reduced size of the conformal sets, we also compute
the empirical average sizes of these sets.

6.2 Comparison with Naive Approaches
Figure 4 illustrates the comparison of empirical success probabilities
among the proposed greedy selection method, the random subset
selection method, and the all-humans approach when the combi-
nation method c is set to the majority decision rule. Observably,
the proposed greedy method demonstrates superior performance
compared to the naive approaches.

6.3 Comparison with Top-: Predictors
Figures 5 and 6 compare our conformal multi-expert approach
using the greedy algorithm to select human subsets against the
framework employing top-: set predictors using mode approach for
subset selection. Our framework demonstrates superior empirical
success probability, outperforming both single-expert and multi-
expert baselines, even when the average prediction set size of the
conformal sets is smaller than : .

6.4 What happens as the number of multiple
experts ⌘ increases?

In Figure 7, we compare the empirical success probabilities of
our multi-expert system using the greedy subset selection method
against a human-only expert team and a top-: predictor with a top-
: subset selection algorithm (where : = 8). The expert team re�ects
majority predictions without relying on prediction sets or models.
Our results show that as the number of human experts increases,
our conformal set-based greedy selection approach outperforms
6The tolerance levels U are set at 1.10%, 0.83%, 0.66%, and 0.55% for calibration data of
sizes 180, 240, 300, and 360, respectively.
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Figure 2: Empirical success probability of a multiple expert system utilizing the proposed greedy human subset selection
algorithm in comparison with naive approaches across varying percentages of calibration data on the CIFAR-10H dataset. The
estimation data matches the calibration data proportionally. The left �gure presents results for 3 experts, while the right shows
results for 5 experts. "ALL HUMANS" and "RANDOM" refer to all-human and random subset selection methods, respectively,
applying a majority decision rule. "MODEL" and "HUMAN" indicate the performance of the classi�er and a single expert.
The classi�er employed is Densenet. The average sizes of the conformal sets are 3.75, 4.79, 5.66, 5.69, and 5.92 for calibration
percentages of 10%, 15%, 20%, 25%, and 30%, respectively. Results are averaged over 10 runs, with shaded regions representing
one standard deviation from the mean.

Figure 3: Empirical success probability of our proposed
greedy selection algorithm in comparison with top-: set pre-
dictor framework for di�erent values of : on the CIFAR-10H
dataset using the Resnet classi�er for 100 runs (using ⌘ = 5).
The empirical average set size of the conformal sets is 5.2718.
The calibration and estimation sets each have a size of 2,000.

both the expert team and the top-8 methods, remaining e�ective
even with a large pool of human experts.

7 DISCUSSION
In this section, we explore the assumptions and limitations of the
proposed approach.

Figure 4: Empirical success probability of the multi-expert
system using the proposed greedy human subset selection
algorithm compared to naive approaches across various cali-
bration data percentages on the ImageNet-16H dataset, with
results displayed for 5 experts. "ALL HUMANS" and "RAN-
DOM" refer to all-human and random subset selection meth-
ods, while "MODEL" and "HUMAN" indicate the performance
of the classi�er and a single expert, respectively. The estima-
tion data is proportionally matched to the calibration data.
The average sizes of the conformal sets are 2.67, 2.82, 3.26,
and 3.39 for calibration percentages of 15%, 20%, 25%, and
30%. Results are averaged over 100 runs, with shaded regions
representing one standard deviation from the mean.
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Figure 5: Empirical success probability achieved by the multi-
expert system utilizing the proposed greedy human subset
selection algorithm in comparison with top-: set-valued pre-
dictors on the ImageNet-16Hdataset over 100 runs. The�gure
illustrates results with 3 experts. Both the calibration and
estimation sets comprise 240 images each. The empirical av-
erage size of the conformal sets is 2.8247.

Figure 6: Empirical success probability of the system using
the proposed greedy human subset selection algorithm com-
pared to top-: set-valued predictors on the ImageNet-16H
dataset over 100 runs. The �gure presents results with 5 ex-
perts and maintains the same settings as Figure 5.

Framework. The proposed greedy algorithm relies on an es-
timated confusion matrix for human performance, based on real
expert predictions and following a straightforward Maximum Like-
lihood Estimation approach similar to that of Kerrigan et al. [23].
Exploring more sophisticated methods for estimating the confu-
sion matrix would be advantageous. Additionally, the assumption
of independence among experts may not hold, as their decisions
can in�uence one another. In our framework, we set the tolerance
level U close to zero, which minimally impacts average conformal
set sizes, but this may not always be practical. Future research

Figure 7: Empirical success probability of our proposed
greedy selection algorithm in comparison with the expert
team and top-5 set predictor framework for di�erent num-
ber of experts ⌘ on the ImageNet-16H dataset. The values
are averaged over 100 runs. The empirical average set size
of the conformal sets for all values of ⌘ is 2.8247. The size of
the calibration and estimation sets is ; = 240. The error bars
indicate one standard deviation from the mean.

should examine scenarios where a clear trade-o� exists between
the tolerance level U and average conformal set sizes.

Empirical results. The experimental results show that the pro-
posed greedy selection of human subsets is non-trivial, highlighting
its advantages over majority decisions or random expert choices.
However, our experiments assume well-distributed calibration data,
indicating a need for further exploration in scenarios with multiple
classes and class imbalances. Additionally, we treat all experts as
equally important, though some may o�er greater value. Future
research should examine settings where experts have varying levels
of expertise and assess the likelihood of including high-importance
experts in the selected human subset.

Broader impact. The greedy subset selection of human ex-
perts enables a realistic human-AI collaboration, where each expert
chooses from a re�ned set of options. Future work could enhance
this framework by accurately modeling experts’ class preferences
and interdependencies, as well as exploring alternative collabora-
tion methods, such as a scoring system instead of simple subset
selection.

8 CONCLUSION
We have looked at the challenge of human-AI collaboration among
multiple experts through the framework of subset selection. Our
theoretical analysis demonstrates the conditions under which se-
lecting multiple experts from conformal sets is more advantageous
than choosing from the entire label space. Inspired by these �ndings,
we propose a greedy algorithm for selecting human subsets based
on conformal sets to improve classi�cation performance during
inference. We have shown that this method outperforms both naive
subset selection approaches and greedy strategies based on top-:
prediction sets.
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