Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114213
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorQiao, Zen_US
dc.creatorYang, Xen_US
dc.creatorZhang, Yen_US
dc.date.accessioned2025-07-17T02:46:19Z-
dc.date.available2025-07-17T02:46:19Z-
dc.identifier.issn1359-4311en_US
dc.identifier.urihttp://hdl.handle.net/10397/114213-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.en_US
dc.rightsThis is the preprint version of the following article: Qiao, Z., Yang, X., & Zhang, Y. (2024). A free-energy based multiple-distribution-function lattice Boltzmann method for multi-component and multi-phase flows. Applied Thermal Engineering, 257, 124241, which is available at https://doi.org/10.1016/j.applthermaleng.2024.124241en_US
dc.subjectFree energy modelen_US
dc.subjectLattice Boltzmann methoden_US
dc.subjectMulti-component and multi-phase flowen_US
dc.titleA free-energy based multiple-distribution-function lattice Boltzmann method for multi-component and multi-phase flowsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: A novel approach for simulating multi-component and multi-phase flow using free energy and multiple distribution functions in lattice Boltzmann methoden_US
dc.identifier.volume257en_US
dc.identifier.doi10.1016/j.applthermaleng.2024.124241en_US
dcterms.abstractThis study presents the development of a multiple-distribution-function lattice Boltzmann model (MDF-LBM) for the accurate simulation of multi-component and multi-phase flow. The model is based on the diffuse interface theory and free energy model, which enable the derivation of hydrodynamic equations for the system. These equations comprise a Cahn-Hilliard (CH) type mass balance equation, which accounts for cross diffusion terms for each species, and a momentum balance equation. By establishing a relationship between the total chemical potential and the general pressure, the momentum balance equation is reformulated in a potential form. This potential form, together with the CH type mass balance equation, is then utilized to construct the MDF-LBM as a coupled convection–diffusion system. Numerical simulations demonstrate that the proposed MDF-LBM accurately captures phase behavior and ensures mass conservation. Additionally, the calculated interface tension exhibits good agreement with experimental data obtained from laboratory studies.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied thermal engineering, 1 Dec. 2024, v. 257, pt. A, 124241en_US
dcterms.isPartOfApplied thermal engineeringen_US
dcterms.issued2024-12-
dc.identifier.scopus2-s2.0-85202205591-
dc.identifier.eissn1873-5606en_US
dc.identifier.artn124241en_US
dc.description.validate202507 bcchen_US
dc.description.oaAuthor’s Originalen_US
dc.identifier.FolderNumbera3885a-
dc.identifier.SubFormID51555-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AO)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qiao_Free_Energy_Based.pdfPreprint version1.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Author’s Original
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

4
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.