Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114154
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLei, M-
dc.creatorPong, TK-
dc.creatorSun, S-
dc.creatorYue, MC-
dc.date.accessioned2025-07-15T08:41:56Z-
dc.date.available2025-07-15T08:41:56Z-
dc.identifier.issn1052-6234-
dc.identifier.urihttp://hdl.handle.net/10397/114154-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Lei, M., Pong, T. K., Sun, S., & Yue, M.-C. (2025). Subdifferentially Polynomially Bounded Functions and Gaussian Smoothing–Based Zeroth-Order Optimization. SIAM Journal on Optimization, 35(2), 1393-1418 is available at https://doi.org/10.1137/24M1659911.en_US
dc.subjectGaussian smoothingen_US
dc.subjectZeroth-order optimizationen_US
dc.subjectSubdifferentially polynomially bounded functionsen_US
dc.subjectGoldstein stationarityen_US
dc.titleSubdifferentially polynomially bounded functions and Gaussian smoothing–based zeroth-order optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1393-
dc.identifier.epage1418-
dc.identifier.volume35-
dc.identifier.issue2-
dc.identifier.doi10.1137/24M1659911-
dcterms.abstractWe study the class of subdifferentially polynomially bounded (SPB) functions, which is a rich class of locally Lipschitz functions that encompasses all Lipschitz functions, all gradientor Hessian-Lipschitz functions, and even some nonsmooth locally Lipschitz functions. We show that SPB functions are compatible with Gaussian smoothing (GS), in the sense that the GS of any SPB function is well-defined and satisfies a descent lemma akin to gradient-Lipschitz functions, with the Lipschitz constant replaced by a polynomial function. Leveraging this descent lemma, we propose GS-based zeroth-order optimization algorithms with an adaptive stepsize strategy for minimizing SPB functions, and we analyze their convergence rates with respect to both relative and absolute stationarity measures. Finally, we also establish the iteration complexity for achieving a (\delta , \epsilon )-approximate stationary point, based on a novel quantification of Goldstein stationarity via the GS gradient that could be of independent interest.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2025, v. 35, no. 2, p. 1393-1418-
dcterms.isPartOfSIAM journal on optimization-
dcterms.issued2025-
dc.identifier.eissn1095-7189-
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3852aen_US
dc.identifier.SubFormID51339en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (project 2023QYJ08)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
24m1659911.pdf494.25 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.