Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114091
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorZhou, Y-
dc.creatorLi, H-
dc.creatorWang, J-
dc.creatorYu, Y-
dc.date.accessioned2025-07-11T09:11:33Z-
dc.date.available2025-07-11T09:11:33Z-
dc.identifier.issn1096-3480-
dc.identifier.urihttp://hdl.handle.net/10397/114091-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication Zhou, Y., Li, H., Wang, J., & Yu, Y. (2025). Tourism Demand Interval Forecasting With an Intelligence Optimization-Based Integration Method. Journal of Hospitality & Tourism Research, 0(0). Copyright © 2025 The Author(s). DOI: 10.1177/10963480241305748.en_US
dc.subjectInterval forecastingen_US
dc.subjectModified transit search optimization algorithmen_US
dc.subjectMulti-source big dataen_US
dc.subjectTourism demand forecastingen_US
dc.titleTourism demand interval forecasting with an intelligence optimization-based integration methoden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1177/10963480241305748-
dcterms.abstractInterval forecasting for tourism demand holds significant theoretical and practical insights. However, research on integrating social reviews into multi-source for interval prediction is still developing. To fill this research gap, this study proposes an integrated method for tourism demand interval prediction by combining multi-source data with a modified swarm intelligence optimizer. This method can extract essential intrinsic features from multi-source data and select an appropriate probability density function to extend point predictions to initial prediction intervals, then further refine the initial prediction intervals to improve the prediction accuracy. Empirical studies on the tourism demand of Mount Siguniang and Jiuzhaigou validate the superior predictive capabilities of the proposed model. Experimental results demonstrate that (a) incorporating a multi-source dataset with social reviews significantly enhances the accuracy of the proposed model; and (b) the modified transit search algorithm effectively balances the coverage and width of prediction intervals, thus improving the generalizability of the model.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of hospitality and tourism research, First published online November 25, 2024, OnlineFirst, https://doi.org/10.1177/10963480241305748-
dcterms.isPartOfJournal of hospitality and tourism research-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85213857531-
dc.identifier.eissn1557-7554-
dc.description.validate202507 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3856aen_US
dc.identifier.SubFormID51427en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Major Program of National Social Science Foundation of China (Grant No. 17ZDA093)en_US
dc.description.fundingText2024 Liaoning Provincial Department of Education Graduate Student Research and Innovation Special Project (Grant No. DUFEYJS24029)en_US
dc.description.pubStatusEarly releaseen_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhou_Tourism_Demand_Interval.pdfPre-Published version3.39 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.