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TOURISM DEMAND INTERVAL FORECASTING WITH AN 

INTELLIGENCE OPTIMIZATION-BASED INTEGRATION METHOD 

Highlight 

1. This study is the first to use multi-source data to forecast tourism demand intervals. 

2. This study references probability density methods for tourism demand forecasting. 

3. This study pioneers the use of the MTSO algorithm to forecast travel demand intervals. 

4. The results show that MTSO-ARIMAX has superior performance compared with 

benchmarks. 

 

Abstract 

Interval forecasting for tourism demand holds significant theoretical and practical 

insights. However, research on integrating social reviews into multi-source for interval 

prediction is still developing. To fill this research gap, this study proposes an integrated 

method for tourism demand interval prediction by combining multi-source data with a 

modified swarm intelligence optimizer. This method can extract essential intrinsic features 

from multi-source and select an appropriate probability density function to extend point 

predictions to initial prediction intervals, then further refine the initial prediction intervals to 

improve the prediction accuracy. Empirical studies on the tourism demand of Mount 

Siguniang and Jiuzhaigou validate the superior predictive capabilities of the proposed model. 

Experimental results demonstrate that (a) incorporating a multi-source dataset with social 

reviews significantly enhances the accuracy of the proposed model; (b) the modified transit 

search algorithm effectively balances the coverage and width of prediction intervals, thus 

improving the generalizability of the model. 

Keywords: Tourism demand forecasting; Interval forecasting; Modified transit search 

optimization algorithm; Multi-source big data 



 

 
 

1. Introduction 

As the tourist industry expands, forecasting tourism demand has become a pivotal element in 

societal progress. Accurately predicting tourist demand at various destinations not only 

provides valuable insights for sectors related to tourism but also offers objective guidance for 

decision-makers involved in infrastructure development and the planning of accommodation 

locations (Y. Li et al., 2024; Ma et al., 2024). Consequently, precise and timely tourism 

demand forecasting has gained significant prominence in recent academic research within the 

field of tourism (Y. Li et al., 2022). 

The construction of effective tourism demand forecasting models has become a focal 

point for researchers due to its significant theoretical and practical implications (Song, Qiu, et 

al., 2019). Traditional tourism demand forecasting relies on structured data, which is often 

delayed and difficult to obtain, thus limiting forecast precision (Andrawis et al., 2011; Gunter 

& Önder, 2015; H. Liu et al., 2021). With the advent of the Internet, the incorporation of 

"online" data sources such as search engines now provides timely insights into tourist 

preferences (Wamba et al., 2015). Recent advancements have shown that leveraging high-

frequency Internet data can significantly improve forecasting effectiveness (Law et al., 2019; 

X. Li et al., 2021; Xie et al., 2021). 

Furthermore, the vast amount of textual data available online offers potential insights 

about destinations (Chen et al., 2024; M. Hu et al., 2022). Notably, the evolution of computer 

technology has given rise to various social and review platforms, with some studies 

highlighting the critical role of online reviews in improving the efficiency of tourism 

forecasting (He et al., 2023; H. Li et al., 2020). However, most research has primarily utilized 

reviews from dedicated tourism websites, overlooking the impact of more abundant social 

reviews on forecasting models (Mendieta-Aragón et al., 2024). Therefore, exploring the 



 

 
 

integration of social reviews to develop an effective multi-source data paradigm remains an 

important challenge in refining the tourism demand forecasting frameworks. 

Another essential attempt to improve tourism demand forecasting is to develop more 

effective models. However, recent research on tourism demand forecasting, as highlighted by 

Wu et al. (2017) and G. Li et al. (2019), has mainly focused on point forecasts. Although 

point forecasting is straightforward and easily interpretable (Wang, Zhou, et al., 2023), its 

limited information often fails to meet the comprehensive needs of decision-makers. In 

contrast, uncertainty analysis based on interval prediction provides a valuable alternative by 

generating different prediction intervals at different confidence levels. This approach not only 

enriches the granularity of information available to decision-makers, but also enhances 

strategic flexibility, enabling more robust responses to market dynamics and potential 

volatilities (Wang, Zhang, et al., 2023; Xie et al., 2023). 

Despite the fact that interval forecasting can provide richer forecast information and 

practical insights, research focusing on tourism demand interval forecasting is still relatively 

limited compared to point forecasting (G. Li et al., 2019). Early interval forecasting of 

tourism demand was mainly based on bias-corrected bootstrap methods (Song, Wen, et al., 

2019; Xie et al., 2023). In the context of high-frequency fluctuations in tourism demand, such 

parameter-sensitive and strict data assumption statistical methods may not reflect the true 

uncertainty. Moreover, integrated interval forecasting methods based on decomposition and 

artificial intelligence have been gradually proposed in recent studies (Jiang, 2023; Wang, 

Zhang, et al., 2023; Xie et al., 2023). However, the distribution of forecast sequences and the 

synergistic constraints between the coverage and the width of forecast intervals are not 

sufficiently considered when extending the forecast sequences to forecast intervals, which 

makes most forecasting models unable to adapt to fluctuating demand forecasts, especially 

large fluctuations in demand caused by extreme situations such as pandemic. Therefore, it is 



 

 
 

particularly important to construct a stable and effective tourism demand interval forecasting 

model to provide decision-makers with comprehensive risk decision support. 

To address the above problems, we propose a new tourism demand interval prediction 

model (MTSO-ARIMAX) based on the combination of multi-source data, autoregressive 

integrated moving average model with exogenous variables (ARIMAX), and modified transit 

search optimizer (MTSO). The MTSO-ARIMAX model can effectively balance the interval 

coverage and interval width according to different confidence levels, and then optimize the 

prediction intervals. 

The contribution of this paper is multi-perspective. First, previous studies on tourism 

demand forecasting have seldom delved deeply into the optimization mechanisms of interval 

forecasting models. In this paper, a new tourism demand interval model based on the 

integration strategy is proposed for the first time, and the model is successfully applied to the 

tourism demand forecasting of several destinations. The MTSO-ARIMAX model integrates 

multi-source data, the ARIMAX method, the distribution analysis method, and the MTSO 

algorithm. It overcomes the limitations of traditional interval forecasting methods that do not 

comprehensively consider interval forecasting metrics. This study provides a clear and 

feasible exploration for future research on tourism demand interval forecasting. Unlike 

existing studies, this paper not only explores the potential distribution characteristics of the 

forecasting sequences, but also utilizes the MTSO algorithm to further optimize the 

forecasting intervals. This approach takes into account the statistical distribution of the 

forecast sequences and co-optimization of the interval forecasting metrics to improve the 

accuracy and practicality of the forecasts. 

Second, this study is one of the first to incorporate historical tourist data, search engine 

data, travel website reviews, and social reviews as predictor variables for tourism demand 

interval forecasting. This approach integrates and downscales multi-source data by 



 

 
 

employing principal component analysis (PCA), which is a significant shift from traditional 

models that predominantly utilize search engine and travel website data. The proposed 

approach leverages a diverse dataset and analytical techniques to overcome the limitations of 

previous variable configurations, thus establishing an important data framework for future 

research in tourism demand interval forecasting. 

Third, this study innovatively integrates the ARIMAX model and the maximum 

likelihood estimation (MLE) method to expand point prediction sequences into prediction 

intervals. Unlike previous studies, this paper fully considers the distribution of the sequence 

based on point forecasting and employs the MLE method to effectively fit the probability 

distribution of the prediction sequence, thus expanding the prediction sequence into 

prediction intervals. This method strengthens the connection between point forecasting and 

interval forecasting, and provides a reference for the subsequent study of tourism demand 

interval forecasting from the perspective of probability density. 



 

 
 

2. Literature review 

2.1 Current methods of tourist demand forecasting 

Two prominent methodologies in tourism demand forecasting include point forecasting and 

interval forecasting. In point forecasting, commonly used models include time series, 

econometric, and artificial intelligence (AI) models (A. Liu et al., 2022). Time series models 

utilize intrinsic patterns in historical data for forecasting (Wu et al., 2024). Common time series 

models are simple moving average (SMA), exponential smoothing (ES), ARIMA, and Naïve 

models. While effective in revealing historical patterns, these models have limitations in 

quantifying the impact of external variables on future demand (Jiao et al., 2021). 

Econometric models can explore causal relationships between tourism demand and 

influencing factors. However, as predictor variables increase, econometric models face 

limitations such as overfitting and multicollinearity (Huang & Zheng, 2023). To address this, 

scholars have introduced AI-driven forecasting methods. AI models like support vector 

regression (SVR), random forest (RF), least absolute shrinkage and selection operator 

(LASSO), long short-term memory (LSTM), and backpropagation neural network (BPnn) are 

widely used in tourism demand forecasting (Fan et al., 2023; T. Hu et al., 2023; Zhang et al., 

2020). While each model has merits, none has shown unequivocal superiority across all 

scenarios (H. Li et al., 2020). 

Furthermore, interval forecasting focuses on providing a series of forecasts based on 

different confidence levels. These models can provide destination managers with a richer 

understanding of demand fluctuations for different decision needs (Wang, Zhang, et al., 

2023). Despite the advantages of interval forecasting, the application of interval forecasting 

to tourism demand has been considered limited (G. Li et al., 2019). Recently, interval 

forecasting models based on AI methods, quantile regression (QR) approach, and 

decomposition-ensemble strategy have been applied to tourism demand forecasting (Jiang, 



 

 
 

2023; Wang, Zhang, et al., 2023; Xie et al., 2023). However, extensive research on interval 

forecasting is still lacking in the tourism literature (Jiang, 2023). 

2.2 Current status of tourism demand forecasting systems using multi-source data 

The application of Internet data has been an important driver in the evolution of tourism 

demand forecasting methods (Song, Qiu, et al., 2019). With the advent of the Web 2.0 era, the 

development of Internet technologies has not only drastically changed users’ travel decisions 

but also provided industry practitioners with more data to make decisions (Wu et al., 2024). 

Consequently, numerous studies in recent years have attempted to combine Internet data for 

more accurate forecasting (Bi et al., 2022; Han et al., 2024; M. Hu & Song, 2020). M. Hu and 

Song (2020) validate that BPnn model incorporating search engine data outperform other 

benchmark models. Bi et al. (2022) combined historical tourist data, search engine data, 

weather data, and public holiday data into a multi-source dataset to predict daily tourist 

demand for the Huangshan Mountain area. Han et al. (2024) used the aforementioned multi-

source dataset to analyze the daily tourism demand in Jiuzhaigou, demonstrating the 

effectiveness of multi-source data in enhancing the accuracy of tourism demand forecasting. 

Furthermore, unlike search engine data which can reflect tourists’ information needs and 

preferences (M. Hu et al., 2021), unstructured travel website reviews and social reviews can 

more directly reflect the sentiments of the public. Therefore, existing studies have attempted 

to incorporate review data to enhance forecasting efficiency (H. Li et al., 2020, 2023; 

Mendieta-Aragón et al., 2024). H. Li et al. (2020) combined travel website reviews from 

Ctrip and Qunar with search engine data to construct an effective tourism demand forecasting 

model. By integrating travel website reviews, search engine data, and official announcements, 

H. Li et al. (2023) accurately forecasted weekly and monthly tourism demand for the 

Kulangsu Scenic area. Mendieta-Aragón et al. (2024) verified the positive impact of Twitter 

data in improving traditional time series models. However, most studies rely primarily on 



 

 
 

travel website reviews, and the practice of constructing multi-source datasets based on 

unstructured social reviews for tourism forecasting needs further exploration (Wu et al., 

2024). 

2.3 Current status of tourism demand interval forecasting 

Research on interval forecasting for tourism forecasting is relatively limited, with early 

studies often relying on bootstrap methods (Kim et al., 2010, 2011). For instance, Kim et al. 

(2010) used a bias-corrected bootstrap approach to predict visitor arrival intervals in Hong 

Kong, and found that it to be particularly effective for small sample sizes. However, its 

effectiveness is highly sample dependent and susceptible to noise and variability. 

Recently, interval prediction models based on integration strategies have been widely 

applied in tourism demand forecasting. G. Li et al. (2019) developed a combination interval 

prediction (PIC) strategy based on normal distribution to enhance the accuracy of tourism 

demand forecasting by studying the fluctuations of inbound tourism to Hong Kong. Wang, 

Zhang, et al. (2023) developed a short-term tourism demand interval prediction model using 

AI algorithms (MMGTO-ESN) and applied it to analyze the daily visitor arrivals in 

Jiuzhaigou and Hawaii during the pandemic. Meanwhile, Jiang (2023) successfully predicted 

future visitor arrivals in Jiuzhaigou using an optimized QR method. Xie et al. (2023) 

constructed a new tourism demand interval prediction model using AI model and 

decomposition-ensemble strategy to analyze weekly tourism demand fluctuations in 

Jiuzhaigou and Hawaii. However, integration models are not always superior, and the 

complexity of artificial intelligence models may limit their practicality (Jiang, 2023; G. Li et 

al., 2019). Moreover, most studies do not comprehensively consider the tradeoffs between the 

coverage and width of the forecast interval. Therefore, the development of new tourism 

interval forecasting models remains of significant theoretical and practical importance. 



 

 
 

2.4 Rationale for the current research 

Reviewing the above literature, first, research on multi-source data-driven tourism 

demand forecasting has mainly relied on search engine data and travel website reviews, with 

limited exploration of social reviews (Wu et al., 2024). However, structured search engine 

data typically reflects the public's interest in destination-related information and does not 

capture subtle emotional shifts (M. Hu et al., 2022). Reviews on travel websites are limited 

and may hinder the ability of researchers to identify accurate demand trends. In contrast, 

social media platforms, with their unique "many-to-many" network, facilitate extensive 

public discussion and rapid dissemination of review information (Yang et al., 2021). 

Additionally, extracting emotional and thematic information from unstructured online 

comments is key to advancing the field of demand forecasting (Wu et al., 2024). Based on 

these considerations, this study integrates historical tourist data, search engine data, travel 

website reviews, and social reviews, and uses SnowNLP and Latent Dirichlet Allocation 

(LDA) to extract emotional and thematic information from social reviews, thereby providing 

an important multi-source data foundation to enhance tourism demand forecasting. 

Second, research on interval forecasting for tourism demand is relatively scarce and 

lacks thorough theoretical and practical exploration. On the one hand, most distribution-based 

interval forecasting studies for tourism demand assume that prediction sequences follow a 

normal distribution and do not specifically address the issue of the probability density 

distribution of prediction sequences, which may reduce the accuracy of prediction intervals 

(G. Li et al., 2019; Xie et al., 2023). On the other hand, the lack of comprehensive 

consideration of prediction interval coverage and width leads to poor performance of 

forecasting models, especially when faced with data fluctuations caused by external 

interventions such as pandemics (Wang, Zhang, et al., 2023). To address this issue, this paper 

first uses the ARIMAX model and the MLE method to select the appropriate probability 



 

 
 

density function based on the fit between the forecast sequence and common distributions, 

thereby effectively extending point forecasts to forecast intervals. Then, utilizing the 

advantages of swarm intelligence optimization algorithms in improving the generalization of 

the model (Wang, Zhou, et al., 2023), this paper investigates and improves a swarm 

intelligence optimization algorithm and applies it to adjust forecast intervals, thus effectively 

balancing the coverage and width of forecast intervals. 



 

 
 

3. Methodology 

3.1 Principal components analysis 

The algebraic form of PCA was first proposed by Hotelling (1933), and this technique is 

mainly employed for dimensionality reduction of data (Sarbu & Pop, 2005). 

Suppose the original variable set O  is an m n×  matrix, and through PCA technique, 

O  can be transformed into Z . The transformation process can be expressed as follows. 

 
...
...

... ... ... ...
...

11 11 12 12 1n 1n

21 21 22 22 2n 2n

m1 m1 m2 m2 mn mn

Z PO
P O P O P O
P O P O P O

P O P O P O

=

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ =
 
 ⋅ ⋅ ⋅ 

  (1) 

In PCA technique, the ith principal component Zi  can be calculate as: 

 ... ,     1, 2,...,i i1 i1 i2 i2 in inZ P O P O P O i m= ⋅ + ⋅ + + ⋅ =   (2) 
Under the above transformation, the principal components can be selected step by step, 

until most of the information of the guiding variables is considered. 

3.2 ARIMAX model 

The ARIMAX model, which is developed based on ARIMA, can include other series as 

forecast inputs. Assuming that both output (Opt ) and input variables ( Ipt ) are time sequences 

consisting of random variables, the regression model between output and input can be 

expressed as follows (Paul, 2015): 

 ( ) ( )1 1 1
1 1P Q ROp ' Ipt t tB B B eσ σ σ

σ σ σσ σ σ
θ µ ϑ ξ∆

= = =
− = + + +∑ ∑ ∑   (3) 

where σθ , µ , σϑ  and σξ  are the unknown parameters, σ  and te  express the errors. 

Furthermore, the usual lag operator B  and the difference between adjacent output variable 

Opt∆  can be determined by: 
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3.3 Modified transit search optimizer 

The transit search optimizer (TSO) is inspired by one of the most successful methods for 

detecting planets, known as the transit method. This algorithm consists of several main 

phases, including galaxy, transit, planet, neighbor and exploitation (Mirrashid & Naderpour, 

2022). 

TSO algorithm first determines the search space RRL  by a random selection method. 

 , ,     1, 2,...,RR i gL CL D Noise i Ns Sn= + − = ×   (5) 

 
        

        

,

,
g r

g r

c CL L if in the negative region
D

c CL L if in the positive region
α

α

× −=  × +
  (6) 

 ( )3

rNoise c Lβ=   (7) 

where gCL  is the center position of the galaxy, rL  is the random position in the search 

space, and Ns Sn×  presents the total number of the initial individual. cα  and c β  are two 

random coefficients between [ ]0 1, . 

Then, for each star, its merit is evaluated by calculating the fitness value. For those stars 

that perform well, we record them planets. The luminosity ψ  of the planet (i.e., the fitness 

value) can be estimated from the distance between the star and the observer ( Dd ) and from 

the spectra observed by the observer. 

 
( )

{ },
,2 ,     1, 2,..., ,     1, 2,...,t k

k t k
k

R Ns
k Ns R Ns

Dd
ψ = = ∈   (8) 

 ( )2

k p oDd L L= −   (9) 

where pL  and oL  are the position of the star and the observer, respectively. 

During the calculation, the algorithm maintains the optimal solution for each star. After 

each transit, the algorithm updates the position of the star if the new solution proves superior. 

This process is analogous to planets moving to new position after passing by the sun. 

 , ,
new
p k p kL L D Noiseδ δ= + −   (10) 



 

 
 

 ,p kD c Lδ δ=   (11) 

 ( )3
pNoise c Lδ δ=   (12) 

where cδ  is a random vector between [ ]1 1,− . Eventually, the algorithm stops searching 

when it finds the global optimal solution or reaches the maximum number of iterations. 

Furthermore, it is important to emphasize that the traditional TSO algorithm tends to 

converge prematurely to local optima. To address this limitation, this paper introduces a 

modified version of the TSO algorithm, termed MTSO. By incorporating the tent chaos 

mapping into the random selection process, MTSO enhances its exploratory capabilities, 

making it more adept at handling complex optimization problems characterized by 

nonlinearity, high uncertainty, and multiple peaks. In the MTSO algorithm, a novel formula 

for selecting the search space MTSO
RRL  has been defined to optimize the performance of the 

algorithm. 

 , ,     1, 2,...,MTSO MTSO MTSO
RR i gL CL D Noise i Ns Sn= + − = ×   (13) 

where MTSOD  and MTSONoise  can be presented by the tent chaos map random vector Tc : 

 
        

        

,

,
g rMTSO

g r

Tc CL Tc L if in the negative region
D
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× − ×=  × + ×
  (14) 

 ( )3MTSO
rNoise Tc L=   (15) 

3.4 Benchmark models 

ARIMA model 

The ARIMA model is a sophisticated statistical model employed for time series analysis. This 

model integrates three principal components: autoregression ( ( )1
1 p j

jj
Lφ

=
−∑ ), differencing 

( ( )1 dL− ), and moving average ( ( )1
1 q i

i ti
Lθ ε

=
+∑ ), which together facilitate the forecasting of 

future values in time series data. The general form of this model is presented as follows (H. 

Li et al., 2020): 

 ( )( ) ( )1 1
1 1 1p qdj i

j t i tj i
L L H Lφ θ ε

= =
− − = +∑ ∑   (16) 



 

 
 

where tH  is the time series data. 

ES model 

The ES model is a sophisticated technique for forecasting time series data. The core principle 

of this method is to assign exponentially decreasing weights to the observations over time. 

Consequently, this weighting scheme prioritizes more recent observations, giving them a 

greater influence on the forecast than their older counterparts. 

Naïve/Seasonal Naïve model 

The Naïve and SNaïve models assume that future predictions are determined only by 

historical data (G. Li et al., 2019). For Naïve model, 1
ˆ

t tH H −= , where ˆ
tH  is the forecast 

value, 1tH −  is the current tourism demand. For SNaïve model, ˆ
t t sH H −= , where 4s =  in 

this paper. 

SMA model 

The SMA model is a straightforward forecasting technique used in time series analysis to 

smooth short-term fluctuations and highlight longer-term trends or cycles. The formula for 

the SMA model is given by ( ) 11ˆ t
t ii t l

H l H−

= −
= ∑ , where 4l =  in this study. 

LASSO model 

The LASSO model is a regression analysis method that performs both variable selection and 

regularization in order to enhance the prediction accuracy and interpretability of the statistical 

model it produces (H. Liu et al., 2021). The primary objective of the LASSO model is to 

minimize the following function: 

 ( )2

1 1 1

1
2

arg min n p p
tjt o j jt j j

H Ds
nβ

β β λ β
= = =

 − − + 
 

∑ ∑ ∑   (17) 

where tjDs  is the predictors, 0β  and , 1,...,j j pβ =  represent the intercept and 

coefficients, respectively. n  and p  are the number of observations and predictors, 



 

 
 

respectively. The λ  parameter determines the level of penalty applied to the coefficients. In 

this paper, the optimal λ  is determined by grid search method. 

RF model 

Random forest is a powerful integrated learning method for classification and regression 

tasks (H. Li et al., 2020). It builds on the concept of decision trees and combines the 

prediction of multiple decision trees to improve accuracy and control overfitting. For 

regression tasks, the prediction of the RF model is the average of the predictions of all 

individual regression trees: 

 
1

1ˆ ˆB b
t tb

H H
B =

= ∑   (18) 

where B  is the number of trees, and ˆ b
tH  is the prediction of the bth tree. The robust nature 

of the RF model makes it highly applicable for predicting complex, high-dimensional data. 

The main parameters of the RF are optimized by grid search in this paper. 

LSTM model 

In recent years, LSTM networks have become popular in time series analysis, especially in 

tourism demand forecasting. The LSTM architecture features input, forget, and output gates 

that manage the flow of data, retaining essential information and discarding the irrelevant, 

which is crucial for scenarios with long-term dependencies. Figure S1 (a) provides a visual 

representation of this structure. For detailed framework explanations, refer to Zhang et al. 

(2020). The main parameters of the LSTM are optimized by grid search in this paper. 

SVR model 

SVR is a machine learning algorithm widely used in tourism demand forecasting. It maps 

input variables into a high-dimensional space to linearly regress complex relationships (Fan 

et al., 2023). The essence of SVR lies in its ability to generate a unique global optimum by 

solving a quadratic programming problem constrained by linear bounds. This property is 

beneficial for managing the unpredictable patterns of tourism data. The crucial parameters of 



 

 
 

SVR include the regularization parameter c  and the kernel coefficient g , which are 

optimally determined by the grid search method. 

BPnn model 

BPnn, a multi-layer feedforward neural network, is trained using the error backpropagation 

algorithm. As depicted in Figure S1 (b), the architecture of BPnn consists of an input layer, 

several hidden layers, and an output layer, with neurons connected by synapses weighted to 

minimize prediction error (S. Li et al., 2018). The efficacy of BPnn depends on key 

parameters such as hidden size and learning rate, which affect its generalization capabilities. 

This study uses grid search to optimize these parameters. 

3.5 Metric Evaluation 

In this study, four evaluation metrics, namely root mean square error (RMSE), mean absolute 

error (MAE), Willmott’s index of agreement (IA) and mean absolute percentage error 

(MAPE), are used to evaluate the forecasting accuracy of the ARIMAX and benchmark 

models, and these metrics can be calculated as follows. 

 ( )21 ˆRMSE H H
T

= −∑   (19) 

 1 ˆMAE H H
T

= −∑   (20) 

 
( )

( )
2

21
ˆ

ˆ ˆ

H H
IA

H H H H

−
= −

− + −

∑

∑
  (21) 

 1 ˆH H
MAPE

T H

−
= ∑  (22) 

where Ĥ  and H  represent the predicted value and the observed value, H  is the average 

of the observed sequence, and T  is the length of observed sequence. The smaller the value 

of RMSE, MAE and MAPE, the better the performance of the forecasting model, and the 

closer the value of IA is to 1, the better the accuracy of the model. 



 

 
 

Furthermore, R2 is used to measure the effect of the fit of the different distributions, and 

predictive interval coverage probability (PICP), normalized averaged predictive interval 

width (NMPIW), and coverage width-based criterion (CWC) are selected to evaluate the 

effectiveness of the MTSO-ARIMAX and benchmark models. The mathematical formulas of 

these metrics are presented below. 

 
( )
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2
21

ˆH H
R

H H

−
= −

−

∑
∑
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 1 _PICP Y E
T
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 1 Up LowNMPIW
T Up Low

−
=

−
∑   (25) 

 ( ) ( )( )1 PICPCWC NMPIW PICP e β αγ − −= +   (26) 

where Up  and Low  represent the up and low bounds of forecast, Up  is the maximum of 
Up  and Low  is the minimum of Low . 10β =  is the penalty parameter, α  is the 

confidence level. _Y E  and ( )•γ  can be calculate by using 
[ ]
[ ]
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4 Model structure 

In this section, we elucidate the comprehensive architecture of our proposed tourism interval 

prediction system (MTSO-ARIMAX). As depicted in Figure 1, the system’s framework is 

structured into five integral modules: 1) data collection, 2) data preprocessing, 3) ARIMAX 

model training and forecasting, 4) MTSO interval optimization, and 5) model evaluation. A 

detailed explanation of the implementation process for each module is provided below. 

 

Figure 1 Framework of the designed model. 



 

 
 

4.1 Module 1: Data collection 

This study investigates the weekly fluctuations in tourist arrivals at Mount Siguniang and 

Jiuzhaigou, leveraging a multi-source data framework. Table S1 displays the detailed data 

selection, which encompasses historical tourist data, search engine data, travel website 

reviews, and social reviews. 

First, the historical tourist data are compiled from daily records of visitors entering 

Mount Siguniang and Jiuzhaigou as officially recorded. These daily records are aggregated 

into weekly data, denoted as ( )1 2, ,..., NH h h h=  for the purposes of this study. 

Second, with the continuous growth of the Internet, the influence of online information 

on tourist behavior has significantly intensified. Building on the groundwork laid by H. Li et 

al. (2020), we identify 9 keywords related to the tourism of Mount Siguniang and Jiuzhaigou. 

The dataset compiled from these keywords is referred to as { }11 2, ,..., NSe se se se= , where 

1 9N =  in this study. 

Third, reviews on travel websites are an important channel to understand the features 

and related services of the destination. Therefore, this study utilizes data mining techniques to 

collect tourist reviews, the number of reviews, and ratings from two major travel websites, 

Ctrip and Qunar. The data is denoted by { }21 2, ,..., NT t t t= , where 2 3N = . 

Finally, the unique “many-to-many” network structure of social platforms allows for 

diversification of information interactions, and tourists are no longer limited to travel 

websites for information. This study collects reviews, retweets, and likes related to Mount 

Siguniang and Jiuzhaigou from Weibo. Furthermore, we apply SnowNLP and LDA method to 

deeply explore the sentiment and topic information contained in the unstructured text data. 

The final integrated data is represented by { }31 2, ,..., NSr sr sr sr= . 



 

 
 

4.2 Module 2: Data preprocessing 

After the data collection phase, we obtain the following dataset. 

 ( )

31 2

31 2

31 2

1 2 3

1

1 1 1
1 1 1 1 1 1 1
1 1 1
2 2 2 2 2 2 2
1 1 1
3 3 3 3 3 3 3

1

1 1
1 1 1 1

... ... ...

... ... ...

... ... ...
... ... ... ... ... ... ... ... ... ...

... ...

NN N

T NN N

NN N

N N N N

N
N N N N

se se t t sr sr h
Se se se t t sr sr h
T se se t t sr sr h

D
Sr
H se se t t

× + + +

− − − −

 
 
 = =
 
 
  32

31 2

1
1 1 1

1 1 1

...
... ... ...

NN
N N N

NN N
N N N N N N N

sr sr h
se se t t sr sr h

− − −

 
 
 
 
 
 
 
 
  

 (27) 

Consider that the changes in tourism demand are not only influenced by historical tourist 

arrivals and exogenous variables from the previous period, but may also be influenced by 

earlier data. Through experiments, this study first adopts data stretching to reconstruct the 

original data to help the model better understand the inherent trend of data fluctuations. 

Taking the historical tourist data H  as an example, the stretched historical data Hs  is 

shown below. 
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Then, to ensure that the ARIMAX model and other benchmarks have a full view of the 

role of features, this study normalize the stretched data. The normalized stretched data is 

shown below. 

 ( ) ( )1 2 3 1 4N h N N N lDs Ses Ts Srs Hs− × + + + +  =     (29) 

where Ses , Ts , Srs  and Hs  denote the normalized stretched Se , T , Sr  and H  

respectively. 

Although the incorporation of multi-source data is an effective way to improve the 

predictive accuracy, the increased dimensionality of the input data also introduces greater 

complexity. To address this, the study employs PCA for dimensionality reduction, and the 

downscaled data Dsp  is: 



 

 
 

 Dsp Sesp Tsp Srsp Hs =     (30) 

where Sesp , Tsp , and Srsp  denote the downscaled Ses , Ts , and Srs  respectively. 

4.3 Module 3: ARIMAX model training and forecasting 

The ARIMAX model training and forecasting module aims to identify the optimal 

combination of multi-source data and hyperparameters, thereby enhancing the predictive 

accuracy of the ARIMAX model and subsequently improving the interval forecasting 

performance of the MTSO-ARIMAX framework. In this study, the Akaike information 

criterion (AIC) is employed to optimize the hyperparameters of the ARIMAX model. 

In this research, the data after preprocessing is divided into a training set (4th-151th) and 

a test set (152th-213th). The test set is used to compare the predictive performance across 

different models. Furthermore, a rolling forecast method is introduced to further improve the 

predictive capabilities of the ARIMAX model. Specifically, when the forecast step is 1, for 

the forecast period n, data from periods 1 to (n-1) are used to train the model and optimize its 

hyperparameters to obtain the forecast for period n. Subsequently, for the forecast period 

(n+1), data from periods 1 to n are used for training and hyperparameter optimization, and so 

on. The rolling forecast method makes the ARIMAX model more sensitive to short-term 

fluctuations in the data and enables more accurate forecast values to be obtained, thus 

providing an effective database for generating forecast intervals. 

4.4 Module 4: MTSO interval optimization 

After the processing in Module 3, this study obtains the initial prediction sequence. To extend 

this sequence to the prediction interval, we incorporate the MLE theory and apply four 

common probability density functions to fit the prediction sequence. The optimal probability 

density function is selected based on the R2 value, which is then used to construct the initial 

prediction interval [ ]int int,lb ub : 
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where 2/Disα  is the critical value of distribution function at significance level α . 

Furthermore, to improve the quality of the prediction intervals, we introduce reduction 

coefficients ( [ ]50000 50000, ,I IIϑ ϑ ∈ − ) optimized by the MTSO algorithm to further balance 

the coverage and the width of the prediction interval. Therefore, the fitness function of the 

MTSO algorithm is defined as follows: 

 { } minimizeObjective Function α= + −CWC PICP   (32) 
where the formulas and definitions for PICP, CWC and α  are detailed in Section 3.5. 

Through continuous iterative optimization by the MTSO algorithm, the final global optimum 

is the optimal reduction coefficients ( ,I IIϑ ϑ∗ ∗ ) at a specific confidence level α . The final 

prediction intervals obtained based on these reduction coefficients are: 

 fin int

fin int

I

II

lb lb

ub ub

ϑ

ϑ

∗

∗

 = +


= +
  (33) 

4.5 Module 5: Model evaluation 

To evaluate the predictive performance of the MTSO-ARIMAX model based on multi-source 

data, this study conducts three sets of comparative experiments involving 20 different 

models. First, to identify the optimal combination of multi-source data, we compare the 

predictive performance of the ARIMAX model across different data combinations 

( ARIMAXs
I , ARIMAX t

II , ARIMAXs
III , ARIMAXs+ s

IV , ARIMAX t+ s
V , ARIMAXs+t

VI , and 

ARIMAXs+t+ s
VII ) using RMSE, MAE, IA, and MAPE as metrics. The formulas for these 

metrics are consistent with Eqs. (19) to (22). Subsequently, we introduce 10 common 

univariate and multivariate tourism demand forecasting models to validate the 

appropriateness of selecting ARIMAX as the basic model for interval prediction. The 



 

 
 

univariate benchmark models consist of SMA, Naïve, SNaïve, ARIMA, and ES models. The 

multivariate benchmark models encompass the LASSO, RF, SVR, BPnn, and LSTM models. 

The input selections for these models are detailed in Table S2. Moreover, the selection of 

hyperparameters for the above benchmark model is mainly obtained through grid search, and 

the selection range of these parameters is shown in Table S3. 

Finally, to further validate the interval prediction performance of the MTSO-ARIMAX 

model, three commonly used interval prediction models are selected as benchmark models. 

These include the traditional QR method, the PIC method, and the MMGTO-ESN method. 

Specifically, under different confidence levels ( 0 05.α = , 0 10.α =  and 0 15.α = ), this 

study compares the prediction results of the proposed model with the benchmark models 

under different risk scenarios. The predictive performance of these models is quantified using 

the PICP, NMPIW, and CWC metrics, with the corresponding formulas provided in Eqs. (24) 

to (26). 



 

 
 

5. Experiment results and analysis 

5.1 Data description 

This study focuses on the weekly interval prediction of tourism demand for Mount Siguniang 

and Jiuzhaigou, aiming to enhance the efficiency of these predictions. Building on the 

research by H. Li et al. (2020), this study incorporates social reviews and explores the 

optimal combination of multi-source data. Table S1 details the data collected under each 

category, and the following sections provide a comprehensive elaboration of each category. 

First, we systematically collect daily tourist arrival data from March 30, 2020 to April 

28, 2024, from the official websites of Mount Siguniang (https://www.sgns.cn/) and 

Jiuzhaigou (https://www.jiuzhai.com/). These daily records are aggregated into weekly 

datasets, each consisting of 213 observations. The analysis of the tourism sequence, as 

illustrated in Figure S2, reveals significant weekly fluctuations at both destinations, 

highlighting the importance and practical relevance of developing robust data-driven 

forecasting models. 

Second, given the significant market share of Baidu search engine in China, this study 

has targeted tourist destinations as themes to collect data via Baidu Index 

(https://index.baidu.com/). We collect nine key search terms related to each destination, 

covering aspects such as weather, accommodation options, travel guides, geographical 

locations, and pandemic information. 

Third, the travel website utilized in this study is sourced from Ctrip 

(https://www.ctrip.com/) and Qunar (https://www.qunar.com/). The variables collected 

include review texts, number of reviews, and means of star rating. For the review texts, this 

study employs the SnowNLP algorithm to perform sentiment analysis on each review. 

Finally, this study utilizes data mining technique to extract a substantial volume of social 

reviews from Weibo (https://weibo.com/) using “Mount Siguniang” and “Jiuzhaigou” as 

https://index.baidu.com/


 

 
 

keywords. After eliminating duplicates, the research compiles 92021 reviews related to 

Mount Siguniang and 170241 reviews related to Jiuzhaigou. Additionally, structured data 

related to social reviews are also collected, including weekly number of reviews, means of 

retweets, comments, and likes. 

To transform the unstructured social reviews into structured sequences for subsequent 

predictive analysis, sentiment analysis is performed using the SnowNLP algorithm. 

Moreover, the LDA method is employed to explore the thematic distribution of social 

reviews. The optimal number of topics for the LDA method is determined based on 

coherence scores, ensuring a robust analysis of the underlying themes in the data. 

5.2 Experimental Results 

To comprehensively evaluate the interval prediction performance of the MTSO-ARIMAX 

model, this study designs three sets of comparative experiments. Initially, by evaluating 

ARIMAX models based on different multi-source data combinations, this paper investigates 

the rationale behind supplementing travel website reviews with social reviews. Subsequently, 

the multi-source data-driven ARIMAX model is contrasted with conventional univariate and 

multivariate tourism demand forecasting models to validate the efficiency of the ARIMAX 

model as a foundational tool for interval prediction. Lastly, the study compares prevalent 

tourism demand interval forecasting models to thoroughly analyze the overall predictive 

capability of the MTSO-ARIMAX model. Additionally, experiments conducted at different 

confidence levels further explore the adaptability and practicality of the MTSO-ARIMAX 

model. The subsequent sections provide a detailed analysis of the experimental results. 

Verify the appropriateness of combining social reviews with other Internet data 

The forecasting results of the ARIMAX models based on different combinations of multi-

source data are presented in Table 1. Notably, the ARIMAXs+t+ s
VII  model outperforms others 

in most prediction scenarios in terms of RMSE, MAE, IA, and MAPE. This is mainly due to 



 

 
 

the fact that Internet big data, such as social reviews, can provide a large amount of user 

behavioral information and emotional reflections, increasing the model’s ability to capture 

features and structural adjustments, which in turn makes it possible to improve the demand 

prediction performance. Furthermore, limited and somewhat noisy travel website reviews do 

not significantly improve the prediction accuracy. Therefore, it is necessary to incorporate a 

wider range of social reviews and search engine data to enable the model to capture more 

accurate patterns of tourism demand fluctuations from a combination of multi-source data 

with complementary information to achieve a steady improvement in forecasting efficiency. 

The above comparisons not only confirm the positive impact of social reviews on improving 

prediction accuracy but also identify the optimal data inputs for interval prediction models. 

Verify the effectiveness of using the ARIMAX model 

To validate the efficiency of the ARIMAX model in forecasting tourism demand, this study 

selects 10 different forecasting models as benchmarks. The results, as presented in Table 2, 

demonstrate that the ARIMAXs+t+ s
VII  model based on the optimal combination of multi-

source data significantly outperforms the benchmark models in terms of RMSE, MAE, IA, 

and MAPE. This difference in performance is mainly due to the fact that the ARIMAXs+t+ s
VII  

model is not only able to better capture those tourism demand trends that are driven by 

external variables through additional sources of information, but is also able to deal with non-

stationary time series data and exogenous variables at the same time, resulting in greater 

flexibility in practical applications. Additionally, the DM test results shown in Table S4 reveal 

significant differences between most of the benchmark models and the ARIMAXs+t+ s
VII  model 

at 0 10.α = , which further justifies the selection of the ARIMAX model as the foundation 

for the subsequent interval prediction. 



 

 
 

Table 1 Results based on ARIMAX models. 

Horizon Model 
Mount Siguniang Jiuzhaigou 

RMSE MAE IA MAPE RMSE MAE IA MAPE 

One-step 

ARIMAXs
I  16353.57 12573.21 0.9401 0.3282 30657.78 20491.73 0.9131 0.2889 

ARIMAX t
II  19185.88 13544.17 0.9175 0.3270 38477.81 21415.64 0.8632 0.3244 

ARIMAXs
III  19098.78 13488.64 0.9183 0.3343 31427.55 19859.96 0.9087 0.2778 

ARIMAXs+ s
IV  16859.99 12938.82 0.9363 0.3456 30398.20 20306.98 0.9133 0.2887 

ARIMAX t+ s
V  19300.11 13716.06 0.9166 0.3392 38583.61 21220.10 0.8624 0.3235 

ARIMAXs+ t
VI  16734.63 12921.40 0.9373 0.3308 37192.87 22417.59 0.8722 0.3322 

ARIMAXs+ t+ s
VII  15775.49 11392.83 0.9442 0.2778 30385.92 19316.48 0.9147 0.2614 

Two-step 

ARIMAXs
I  17826.08 12729.73 0.9288 0.3100 31912.54 20216.04 0.9059 0.2824 

ARIMAX t
II  18839.34 13056.63 0.9205 0.3052 33388.03 20728.78 0.8970 0.3090 

ARIMAXs
III  18817.21 13208.18 0.9207 0.3179 31642.25 19985.55 0.9075 0.2745 

ARIMAXs+ s
IV  18449.33 13691.92 0.9237 0.3586 31863.98 20559.21 0.9062 0.2851 

ARIMAX t+ s
V  18739.77 13545.57 0.9213 0.3389 33643.78 21050.59 0.8954 0.3220 

ARIMAXs+ t
VI  18211.72 13304.14 0.9257 0.3215 33581.23 21251.45 0.8958 0.3199 

ARIMAXs+ t+ s
VII  18497.42 12670.30 0.9233 0.2951 31399.42 19687.66 0.9089 0.2693 

Three-step 

ARIMAXs
I  18270.04 13402.80 0.9252 0.3257 31813.92 20244.03 0.9065 0.2851 

ARIMAX t
II  19136.33 13747.02 0.9180 0.3319 32760.73 21451.79 0.9008 0.3218 

ARIMAXs
III  19747.81 13802.77 0.9126 0.3427 31714.02 19913.03 0.9070 0.2747 

ARIMAXs+ s
IV  18637.00 13566.86 0.9222 0.3284 31380.80 20132.51 0.9090 0.2874 

ARIMAX t+ s
V  19088.83 13725.35 0.9184 0.3436 32130.23 20811.45 0.9046 0.3086 

ARIMAXs+ t
VI  17385.37 12623.67 0.9323 0.3120 33583.83 21737.48 0.8958 0.3313 

ARIMAXs+ t+ s
VII  16578.57 12546.21 0.9384 0.3341 31408.46 19711.19 0.9088 0.2708 

Table 2 Results based on different models in Mount Siguniang and Jiuzhaigou. 

Horizon Model Mount Siguniang Jiuzhaigou 
RMSE MAE IA MAPE RMSE MAE IA MAPE 



 

 
 

One-step 

ARIMAXs+ t+ s
VII  15775.49 11392.83 0.9442 0.2778 30385.92 19316.48 0.9147 0.2614 

ARIMA 18930.10 13008.70 0.9197 0.3141 31538.57 19931.01 0.9081 0.2807 
ES 21534.90 15975.42 0.8961 0.3914 38322.06 27867.70 0.8643 0.4294 

SNaïve 32464.63 24357.45 0.7639 0.6434 57318.78 43024.79 0.6964 0.6328 
Naïve 17924.35 11737.02 0.9280 0.2887 30719.73 20906.35 0.9128 0.2985 
SMA 22499.43 16423.13 0.8866 0.4229 40266.51 29750.85 0.8502 0.4422 

LASSO 20239.28 14488.31 0.9082 0.3631 35296.71 25414.12 0.8849 0.3776 
RF 24310.84 18351.56 0.8676 0.4652 35240.36 26206.26 0.8852 0.4170 

LSTM 45129.36 31489.45 0.5437 0.5710 69917.22 52284.30 0.5482 0.5900 
SVR 24456.60 18036.24 0.8660 0.4672 35825.16 27220.29 0.8814 0.4464 
BPnn 50471.90 38283.30 0.4293 0.7666 78541.90 60816.69 0.4299 0.6967 

Two-step 

ARIMAXs+ t+ s
VII  18497.42 12670.30 0.9233 0.2951 31399.42 19687.66 0.9089 0.2693 

ARIMA 25622.83 18890.40 0.8529 0.4780 44148.64 31687.16 0.8199 0.4687 
ES 25770.64 18972.32 0.8512 0.4678 46197.04 34347.69 0.8028 0.5335 

SNaïve 38543.61 29525.10 0.6672 0.6798 68583.88 54129.61 0.5653 0.8772 
Naïve 23876.23 16508.85 0.8723 0.4346 43946.51 31047.81 0.8215 0.4765 
SMA 27098.88 19808.88 0.8355 0.5068 48366.39 35960.60 0.7838 0.5303 

LASSO 31520.40 23109.43 0.7774 0.5592 44908.24 32365.91 0.8136 0.5181 
RF 28731.28 21857.22 0.8151 0.5664 41118.65 32780.16 0.8437 0.6132 

LSTM 45376.36 32715.60 0.5387 0.6040 74181.56 53499.24 0.4914 0.5528 
SVR 40850.05 27307.15 0.6262 0.6071 43033.65 33044.37 0.8289 0.4938 
BPnn 50395.81 38593.21 0.4310 0.7516 74988.43 56757.46 0.4803 0.6305 

Three-step 

ARIMAXs+ t+ s
VII  16578.57 12546.21 0.9384 0.3341 31408.46 19711.19 0.9088 0.2708 

ARIMA 31611.28 23461.58 0.7761 0.5712 52877.60 39398.68 0.7416 0.5370 
ES 29050.68 21508.65 0.8109 0.5289 51538.24 38545.42 0.7545 0.5937 

SNaïve 43155.73 33741.42 0.5828 0.7749 69950.50 57268.11 0.5478 1.0618 
Naïve 28456.49 20073.79 0.8186 0.5239 51745.98 37036.56 0.7525 0.5363 
SMA 30298.60 22211.06 0.7943 0.5625 54146.42 40297.04 0.7290 0.5845 

LASSO 45220.91 33524.53 0.5419 0.6913 48195.58 36887.91 0.7853 0.5303 
RF 33831.33 25732.73 0.7436 0.6541 45985.53 35466.22 0.8046 0.7039 

LSTM 45804.29 31998.57 0.5300 0.5771 71170.55 53621.05 0.5319 0.6117 
SVR 46389.68 34898.02 0.5179 0.7394 48623.68 36456.18 0.7815 0.5249 
BPnn 48580.06 35423.54 0.4713 0.6676 73499.88 56161.26 0.5007 0.6365 

 



 

 
 

Verify the comprehensive performance of the MTSO-ARIMAX model 

To further improve the research framework of tourism demand forecasting, we first employ 

the MLE method to realize the extension of forecast sequences to forecast intervals based on 

the forecasts of the ARIMAXs+t+ s
VII  model. In this process, we use MLE to fit the probability 

density function of the forecast sequences generated by the ARIMAXs+t+ s
VII  model and 

evaluate the goodness of fit of four common probability distributions by R2. The initial 

forecast intervals are then generated based on the optimal distribution function and 

ARIMAXs+t+ s
VII  forecast sequences. According to the results in Table S5, compared with other 

distributions, the R2 value of the lognormal distribution is closest to 1, indicating a high 

degree of fitness for the prediction sequence. These findings not only demonstrate the 

superiority of the lognormal distribution in fitting the prediction sequence, but also highlight 

its stability in multi-step prediction. This supports our decision to use the lognormal 

distribution to extend the prediction sequence of the ARIMAX model into prediction 

intervals. Therefore, the initial interval generation for the subsequent MTSO-ARIMAX 

model is realized based on the lognormal distribution. 

After generating the initial prediction intervals, this study proposes a modified 

optimization algorithm to achieve a reasonable balance between interval coverage and 

interval width, and then generates higher-quality prediction intervals. To validate the interval 

prediction performance of the MTSO-ARIMAX model, this study further employs three 

commonly used tourism demand interval prediction models as benchmarks. The analysis 

results in Table 3 and Figure S3 show that the interval prediction model based on MTSO-

ARIMAX is the most prominent in the comparison of the various models in predicting the 

tourism demand of Mount Siguniang, with a stable PICP value of 0.9516 ( 0 05.α = ). This is 

because the MTSO algorithm, as a novel optimization algorithm, extends the individual 



 

 
 

search domain through chaos mapping, which can deeply balance the antagonistic 

relationship between the coverage and width of the predictions, and thus maximize the 

accuracy and decision significance of the prediction intervals. In contrast, the sparse internal 

connectivity that ESN models usually have prevents them from fully utilizing all the potential 

associations in the input data, thus affecting the learning effect of the model. As a result, the 

MMGTO-ESN model tends to generate wider prediction intervals, although it can also 

achieve the expected interval coverage. Additionally, the prediction intervals generated by the 

PIC method are typically too narrow and often fail to meet the decision-maker’s prediction 

accuracy requirements. The comparison with the above benchmark models not only 

demonstrates the importance of considering the distribution of the prediction sequences, but 

also validates the scientific and effectiveness of using the MTSO algorithm for forecast 

interval adjustment. 

As shown in Table 4 and Figure S4, comparing the interval prediction performance of 

the benchmark model for Jiuzhaigou tourism fluctuations, the MTSO-ARIMAX model has 

obvious advantages in both single-step and multi-step prediction. This stable performance 

improvement is mainly due to the integration advantage of the hybrid model, and further 

adjustment of the prediction intervals is beneficial for the model to overcome the time lag 

limitation caused by increasing the prediction step size. Specifically, compared with the 

benchmark QR method, the CWC values of our proposed MTSO-ARIMAX method decrease 

by 0.9956, 1.7236, and 1.7799, respectively. Furthermore, the prediction intervals of the 

MTSO-ARIMAX model all satisfy the preset confidence level, which is PICP α> , and the 

width of the prediction intervals of the MTSO-ARIMAX model is relatively narrower when 

the coverage of the intervals is the same as that of the MMGTO-ESN model. The above 

results show that the MTSO-ARIMAX method based on the combination of multi-source 

data can achieve more effective prediction interval adjustment than the benchmark method, 



 

 
 

which can better meet the needs of decision-making. Based on these results and analysis, we 

confirm the accuracy and effectiveness of the designed interval forecasting method. 



 

 
 

Table 3 Comparison of interval forecasts in Mount Siguniang. 

Horizon Significant level Model PICP NMPIW CWC 

One-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.4059 0.4059 
MMGTO-ESN 0.8548 0.4665 1.6746 

QR 0.8871 0.5028 1.4458 
PIC 0.5645 0.1436 6.9243 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.3533 0.3533 
MMGTO-ESN 0.9032 0.6887 0.6887 

QR 0.8226 0.3729 1.1818 
PIC 0.5000 0.1205 6.7001 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.2965 0.2965 
MMGTO-ESN 0.8065 0.4636 1.1802 

QR 0.7903 0.3206 0.9028 
PIC 0.4516 0.1055 5.7716 

Two-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.4749 0.4749 
MMGTO-ESN 0.8387 0.5180 2.0942 

QR 0.9032 0.6350 1.6487 
PIC 0.5968 0.1460 5.1409 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.4120 0.4120 
MMGTO-ESN 0.9032 0.6699 0.6699 

QR 0.8548 0.5086 1.3076 
PIC 0.5645 0.1226 3.6329 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.3371 0.3371 
MMGTO-ESN 0.8548 0.3845 0.3845 

QR 0.8387 0.4363 0.9247 
PIC 0.5161 0.1073 3.1303 

Three-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.4245 0.4245 
MMGTO-ESN 0.9032 1.1096 2.8809 

QR 0.9355 0.6909 1.4898 
PIC 0.5968 0.1457 5.1276 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.3722 0.3722 
MMGTO-ESN 0.8710 0.5686 1.3287 

QR 0.9032 0.6094 0.6094 
PIC 0.5323 0.1222 4.9564 



 

 
 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.3250 0.3250 
MMGTO-ESN 0.8548 0.7806 0.7806 

QR 0.8548 0.5237 0.5237 
PIC 0.4839 0.1070 4.2700 

  



 

 
 

Table 4 Comparison of interval forecasts in Jiuzhaigou. 

Horizon Significant level Model PICP NMPIW CWC 

One-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.3569 0.3569 
MMGTO-ESN 0.9032 0.7620 1.9784 

QR 0.8871 0.4703 1.3525 
PIC 0.6129 0.1578 4.7499 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.3042 0.3042 
MMGTO-ESN 0.9032 0.7143 0.7143 

QR 0.8226 0.3678 1.1655 
PIC 0.5323 0.1324 5.3682 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.2646 0.2646 
MMGTO-ESN 0.8548 0.6180 0.6180 

QR 0.6774 0.2724 1.8023 
PIC 0.5161 0.1159 3.3816 

Two-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.4116 0.4116 
MMGTO-ESN 0.8226 0.5787 2.6480 

QR 0.8548 0.5948 2.1352 
PIC 0.5968 0.1568 5.5182 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.3122 0.3122 
MMGTO-ESN 0.9032 0.7989 0.7989 

QR 0.7581 0.5080 2.6083 
PIC 0.5323 0.1316 5.3340 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.2627 0.2627 
MMGTO-ESN 0.8548 0.5531 0.5531 

QR 0.7097 0.3954 2.0040 
PIC 0.5161 0.1151 3.3600 

Three-step 

Alpha=0.05 

MTSO-ARIMAX 0.9516 0.3977 0.3977 
MMGTO-ESN 0.8387 0.5597 2.2630 

QR 0.8710 0.6796 2.1776 
PIC 0.5968 0.1563 5.5013 

Alpha=0.10 

MTSO-ARIMAX 0.9032 0.3129 0.3129 
MMGTO-ESN 0.9032 0.6637 0.6637 

QR 0.7419 0.5839 3.4203 
PIC 0.5484 0.1312 4.5451 



 

 
 

Alpha=0.15 

MTSO-ARIMAX 0.8548 0.2581 0.2581 
MMGTO-ESN 0.8548 0.5444 0.5444 

QR 0.6935 0.4686 2.7086 
PIC 0.5000 0.1148 3.9159 



 

 
 

6. Conclusions and implications 

Achieving accurate and stable high-frequency travel demand interval prediction from the 

perspective of multi-source data is an important and challenging task, but little research has 

been done on this issue. Therefore, in this study, we propose an integrated prediction method 

based on the MTSO algorithm, PCA technique, MLE method, and ARIMAX model for 

weekly tourism demand interval prediction. By integrating search engine data, travel website 

reviews and social reviews into the destination tourism demand forecasting system to predict 

the tourism demand of the famous Chinese tourist attractions, Mount Siguniang and 

Jiuzhaigou, this study verifies the effectiveness and stability of the MTSO-ARIMAX model. 

The experimental results show that (a) the combination of multi-source data based on social 

reviews can effectively improve the forecasting accuracy of the forecasting model, thus 

providing an effective data basis for the interval forecasting of the MTSO-ARIMAX model; 

(b) when introducing complex multi-source data into the forecasting work, the ARIMAX 

model can effectively exploit the intrinsic patterns of historical tourism demand fluctuations 

using exogenous variables, which can be used as the basic model for tourism demand interval 

forecasting; (c) after obtaining the initial forecast intervals by using the ARIMAX forecasting 

sequence and the MLE method, the introduction of the MTSO algorithm to optimize the 

reduction coefficients can effectively balance the coverage and width of the forecast intervals, 

thus generating forecast intervals with high interval coverage and compactness. 

6.1 Theorical implications 

The findings of this research contribute to the existing literature in several ways. First, this 

study is among the first to employ historical tourist data, search engine data, travel website 

reviews, and social reviews as predictor variables to predict tourism demand intervals. This 

approach is different from the previous consideration of only search engine data and travel 

website reviews as a combination of multi-source data. Since the correlation between 



 

 
 

different keywords and destination demand varies, and travel website reviews may be biased 

toward destinations, models based on search engine and travel website reviews alone may not 

be sufficient to accurately predict tourism demand. Therefore, incorporating social reviews 

and analyzing destination aspects with corresponding in-depth topics is essential to improve 

model prediction accuracy. The methodology proposed in this study enriches the dataset by 

diversifying the data and analysis to address the limitations of existing variable combinations, 

and provides an important data framework for future research in tourism demand interval 

forecasting. 

Second, this study innovatively combines the PCA technique, the MLE method, and 

ARIMAX to achieve the extension of point prediction sequences to prediction intervals. 

Traditional studies often assume that the probability density function of the prediction 

sequence is normally distributed, which oversimplifies the distribution in interval prediction 

and may reduce the prediction accuracy. Therefore, we propose an integrated method based 

on MLE that effectively fits the probability distributions of the prediction sequence and 

generates prediction intervals by selecting appropriate distribution functions based on the R2. 

This method improves the generalizability of interval prediction and provides a reference for 

the subsequent study of tourism demand interval prediction from the perspective of 

probability density. 

Third, this study pioneers the application of the MTSO algorithm to the prediction of 

destination tourism demand intervals. Although some scholars believe that interval prediction 

is an important complement to tourism demand point prediction, previous studies rarely 

consider the interaction between interval coverage and interval width, resulting in the 

generation of intervals that are too wide or too narrow and not highly generalizable. 

Therefore, this study proposes a modified swarm intelligence optimizer to achieve effective 

adjustment of the prediction interval through iterative optimization and parallel search with 



 

 
 

the goal of synergistic optimization of interval coverage and interval width. The method 

improves the universality and stability of prediction intervals, and provides a certain 

reference for the subsequent prediction of tourism demand intervals using artificial 

intelligence algorithms. 

6.2 Practical implications 

Overall, this study has two practical implications. First, the social reviews used in this study 

can provide real-time visitor feedback and sentiment analysis. The integration of this 

immediate, high-frequency data with other sources can significantly improve the accuracy of 

tourism demand forecasting models, thereby helping tourism decision-makers to make timely 

adjustments to marketing strategies and service delivery. Second, the MTSO-ARIMAX 

model can generate precise and stable forecast intervals across different confidence levels, 

providing policy makers and industry practitioners with a tool to gain a deeper understanding 

of trends and potential fluctuations in tourism demand. These prediction intervals not only 

help to identify and manage risks, but also guide the tourism industry to make more strategic 

and anticipatory decisions in the face of uncertainty. For instance, during peak or downturn 

periods, policy makers can use these intervals to optimize resource allocation and risk 

management, thereby increasing the resilience and market adaptability of the tourism 

industry. 

6.3 Limitations and future research 

Despite the importance of the above contributions, this study has its limitations. First, there 

are sample specificities. The empirical study area where the two destinations are located is in 

China, so the data collection is based on commonly used search engine websites, travel 

websites and social media in China. If the same methodology is implemented in other 

countries/regions, Google Trends data could be substituted for Baidu Index data. However, 

due to the specificities of the country/region and the technical ability of the personnel, there 



 

 
 

are difficulties in identifying valid travel websites and social networking websites and in 

obtaining accurate data. Therefore, we encourage future research to use data from other 

regions to validate the interval forecasting model proposed in this paper and to explore other 

issues in depth. 

Second, the research objective of this paper is to construct a weekly interval forecasting 

model for tourism demand. Since daily or higher frequency forecasts tend to contain more 

data, deep learning algorithms could potentially be more suitable as the basic model for such 

interval forecasting. Therefore, future research could enrich this research framework by 

investigating optimal models for different frequency forecasts. 

Furthermore, due to data availability, we are unable to use more social media data to 

explore more accurate interval prediction models. However, with the rapid development of 

the Internet, social reviews are no longer limited to simple textual descriptions, and we 

encourage future research to use more social media data to improve the accuracy and stability 

of tourism demand interval prediction, such as secondary comments on original social 

reviews, image reviews, and video reviews. 
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TOURISM DEMAND INTERVAL FORECASTING WITH AN 
INTELLIGENCE OPTIMIZATION-BASED INTEGRATION METHOD 

Appendix. 

 

Figure S1 Framework of benchmark models: (a) LSTM, and (b) BPnn. 

 

Figure S2 Weekly tourist fluctuations: (a) Mount Siguniang, and (b) Jiuzhaigou. 



 

 
 

 

Figure S3 Mount Siguniang’s tourism demand forecasting based on MTSO-ARIMAX model: (a) 

One-step forecasting, (b) Two-step forecasting, and (c) Three-step forecasting. 



 

 
 

 

Figure S4 Jiuzhaigou’s tourism demand forecasting based on MTSO-ARIMAX model: (a) One-step 

forecasting, (b) Two-step forecasting, and (c) Three-step forecasting. 



 

 
 

Table S1 Four categories of candidate variables. 

Category Mount Siguniang Jiuzhaigou 
Historical 

Tourist 
Data 

Historical tourists of Mount Siguniang Historical tourists of Jiuzhaigou 

Search 
Engine 

Mount Siguniang’s tips, Mount Siguniang’s 
weather, Where is Mount Siguniang, Mount 
Siguniang scene area, Tickets of Mount 
Siguniang, Accommodation in Mount 
Siguniang, Travel at Mount Siguniang, 
Altitude of Mount Siguniang, epidemic in 
Sichuan 

Jiuzhaigou’s tips, Jiuzhaigou’s weather, 
Where is Jiuzhaigou, Tickets of Jiuzhaigou, 
Accommodation in Jiuzhaigou, Jiuzhaigou 
airport, Jiuzhaigou hotel, Jiuzhiagou scenery, 
epidemic in Sichuan 

Travel 
Website 
Reviews 

Sentiment score, Number of reviews, Means of 
star rating 

Sentiment score, Number of reviews, Means of 
star rating 

Social 
Reviews 

Number of reviews, Means of retweets, Means 
of comments, Means of likes, Sentiment score, 
Probability of Topic 1, Probability of Topic 2, 
Probability of Topic 3 

Number of reviews, Means of retweets, Means 
of comments, Means of likes, Sentiment score, 
Probability of Topic 1, Probability of Topic 2, 
Probability of Topic 3, Probability of Topic 4, 
Probability of Topic 5, Probability of Topic 6, 
Probability of Topic 7 

 

Table S2 Variable selection for ARIMAX models. 

Category Model Historical 
demand 

Search 
engine 

Travel website 
review 

Social 
review 

Time series 
model 

ARIMAXs
I      

ARIMAX t
II      

ARIMAXs
III      

ARIMAXs+ s
IV      

ARIMAX t+ s
V      

ARIMAXs+ t
VI      

ARIMAXs+ t+ s
VII      

SMA     
ES     

Naïve     
SNaïve     
ARIMA     

AI model 

BPnn     
LASSO     

RF     
SVR     

LSTM     
  



 

 
 

Table S3 Parameter setting of all models. 
Model Parameter Value range 

ES Smoothing parameter 0.3 
LASSO Alpha parameter [0.0001,1] 

RF 
Minimum Samples Split [2,100] 
Maximum Depth of the Tree [3,9] 
Minimum Samples Leaf [1,100] 

SVR 
Penalty Parameter [0.1,100] 
Kernel Coefficient [0.01,1] 
Kernel Type ‘RBF’ 

BPnn 

Epochs 500 
Learning rate [0.0001,0.01] 
Hidden size [10,100] 
Batch size 4 

LSTM 

Epochs 500 
Learning rate [0.0001,0.01] 
Hidden size [10,50] 
Batch size 4 
Drop rate 0.2 

ESN 
Reservoir scale [1,100] 
Reservoir connection rate [0.01,0.99] 
Reservoir spectral radius [0.01,0.99] 

MMGTO 
Population size 100 
Maximum iterations 200 
Archive size 200 

MTSO Population size 100 
Maximum iterations 200 



 

 
 

Table S4 The results of DM test. 

Data 
One-step Two-step Three-step 

Control Model DM value Control Model DM value Control Model DM value 

Mount Siguniang ARIMAXs+ t+ s
VII  

ARIMA 2.7334*** 

ARIMAXs+ t+ s
VII  

ARIMA 3.0682*** 

ARIMAXs+ t+ s
VII  

ARIMA 4.4698*** 
ES 2.6128*** ES 2.9384*** ES 3.7395*** 

SNaïve 3.7629*** SNaïve 5.8491*** SNaïve 6.0829*** 
Naïve 1.7122** Naïve 1.9406** Naïve 3.0142*** 
SMA 2.3775*** SMA 3.1605*** SMA 3.7693*** 

LASSO 2.6446*** LASSO 4.3962*** LASSO 5.8467*** 
RF 3.6659*** RF 4.0315*** RF 4.9103*** 

LSTM 3.8408*** LSTM 5.3553*** LSTM 4.9883*** 
SVR 2.7049*** SVR 3.8214*** SVR 6.1486*** 
BPnn 4.3575*** BPnn 6.7186*** BPnn 5.7721*** 

Jiuzhaigou ARIMAXs+ t+ s
VII  

ARIMA 0.6220 

ARIMAXs+ t+ s
VII  

ARIMA 2.8561*** 

ARIMAXs+ t+ s
VII  

ARIMA 4.2259*** 
ES 2.8172*** ES 3.6722*** ES 4.2207*** 

SNaïve 5.0794*** SNaïve 6.0730*** SNaïve 6.3972*** 
Naïve 0.8914 Naïve 2.6788*** Naïve 3.7314*** 
SMA 3.2553*** SMA 3.9906*** SMA 4.4929*** 

LASSO 3.1688*** LASSO 3.0930*** LASSO 4.1078*** 
RF 2.8486*** RF 3.7769*** RF 3.5865*** 

LSTM 5.8800*** LSTM 5.2390*** LSTM 5.6643*** 
SVR 3.5455*** SVR 3.5715*** SVR 3.7942*** 
BPnn 6.7405*** BPnn 6.0544*** BPnn 6.0090*** 

Note: In this table, “*”, “**” and “***” denote rejection of the null hypothesis at 0 2.α = , 0 1.α = , and 0 05.α = .



 

 
 

Table S5 R2 values of different distribution. 

Dataset Horizon R2 
Lognormal Normal Gamma Weibull 

Mount Siguniang 
One-step 0.9937 0.9313 0.9882 0.9801 
Two-step 0.9935 0.9177 0.9822 0.9754 

Three-step 0.9917 0.9526 0.9949 0.9889 

Jiuzhaigou 
One-step 0.9926 0.9393 0.9878 0.9814 
Two-step 0.9952 0.9395 0.9929 0.9864 

Three-step 0.9949 0.9381 0.9909 0.9847 
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