Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113893
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Xen_US
dc.creatorHu, Yen_US
dc.creatorYang, Xen_US
dc.creatorZhang, Ken_US
dc.date.accessioned2025-06-27T09:30:13Z-
dc.date.available2025-06-27T09:30:13Z-
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://hdl.handle.net/10397/113893-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10915-024-02682-3.en_US
dc.subjectConvergence propertyen_US
dc.subjectEnhanced indexationen_US
dc.subjectHard thresholding pursuiten_US
dc.subjectMix sparse structureen_US
dc.subjectRestricted isometry propertyen_US
dc.titleConstrained mix sparse optimization via hard thresholding pursuiten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume101en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1007/s10915-024-02682-3en_US
dcterms.abstractMix sparse structure, namely the sparse structure appearing in the inter-group and intra-group manners simultaneously, is inherited in a wide class of practical applications. Hard thresholding pursuit (HTP) is a practical and efficient algorithm for solving a least square problem with cardinality constraint. In this paper, we propose an algorithm based on HTP to solve a constrained mix sparse optimization problem, named MixHTP, and establish its linear convergence property under the restricted isometry property. Moreover, we apply the MixHTP to compressive sensing with simulated data and enhanced indexation with real data. Numerical results exhibit an excellent performance of MixHTP on approaching a solution with mix sparse structure and MixHTP outperforms several state-of-the-art algorithms in the literature.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of scientific computing, Dec. 2024, v. 101, no. 3, 55en_US
dcterms.isPartOfJournal of scientific computingen_US
dcterms.issued2024-12-
dc.identifier.scopus2-s2.0-85207273282-
dc.identifier.artn55en_US
dc.description.validate202506 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3809-
dc.identifier.SubFormID51167-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Constrained_Mix_Sparse.pdfPre-Published version2.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

2
Citations as of Dec 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.