Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113853
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorCui, Jen_US
dc.creatorSun, Len_US
dc.date.accessioned2025-06-25T08:30:40Z-
dc.date.available2025-06-25T08:30:40Z-
dc.identifier.urihttp://hdl.handle.net/10397/113853-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematics and American Statistical Associationen_US
dc.rightsCopyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Cui, J., & Sun, L. (2024). Quantifying the Effect of Random Dispersion for Logarithmic Schrödinger Equation. SIAM/ASA Journal on Uncertainty Quantification, 12(2), 579-613 is available at https://doi.org/10.1137/23M1578619.en_US
dc.subjectExit problemen_US
dc.subjectLarge deviation principleen_US
dc.subjectLogarithmic nonlinearityen_US
dc.subjectNoise dispersionen_US
dc.subjectStochastic nonlinear Schrödinger equationen_US
dc.titleQuantifying the effect of random dispersion for logarithmic Schrödinger equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage579en_US
dc.identifier.epage613en_US
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/23M1578619en_US
dcterms.abstractThis paper is concerned with the random effect of the noise dispersion for the stochastic logarithmic Schrödinger equation emerged from the optical fibre with dispersion management. The well-posedness of the logarithmic Schrödinger equation with white noise dispersion is established via the regularization energy approximation and a spatial scaling property. For the small noise case, the effect of the noise dispersion is quantified by the proven large deviation principle under additional regularity assumptions on the initial datum. As an application, we show that for the regularized model, the exit from a neighborhood of the attractor of deterministic equation occurs on a sufficiently large time scale. Furthermore, the exit time and exit point in the small noise case, as well as the effect of large noise dispersion, is also discussed for the stochastic logarithmic Schrödinger equation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM/ASA journal on uncertainty quantification, 2024, v. 12, no. 2, p. 579-613en_US
dcterms.isPartOfSIAM/ASA journal on uncertainty quantificationen_US
dcterms.issued2024-
dc.identifier.eissn2166-2525en_US
dc.description.validate202506 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3799a-
dc.identifier.SubFormID51134-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1578619.pdf1.1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.