Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113805
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLee, HYen_US
dc.creatorZhou, Pen_US
dc.creatorDuan, Aen_US
dc.creatorYang, Cen_US
dc.creatorNavarroAlarcon, Den_US
dc.date.accessioned2025-06-24T06:38:04Z-
dc.date.available2025-06-24T06:38:04Z-
dc.identifier.urihttp://hdl.handle.net/10397/113805-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication H. -Y. Lee, P. Zhou, A. Duan, C. Yang and D. Navarro-Alarcon, "Iterative Shaping of Multi-Particle Aggregates Based on Action Trees and VLM," in IEEE Robotics and Automation Letters, vol. 10, no. 7, pp. 7102-7109, July 2025 is available at https://doi.org/10.1109/LRA.2025.3572426.en_US
dc.subjectAction treesen_US
dc.subjectMulti-particle manipulationen_US
dc.subjectRobot manipulationen_US
dc.subjectShape controlen_US
dc.subjectVLMen_US
dc.titleIterative shaping of multi-particle aggregates based on action trees and VLMen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage7102en_US
dc.identifier.epage7109en_US
dc.identifier.volume10en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1109/LRA.2025.3572426en_US
dcterms.abstractIn this letter, we address the problem of manipulating multi-particle aggregates using a bimanual robotic system. Our approach enables the autonomous transport of dispersed particles through a series of shaping and pushing actions using robotically controlled tools. Achieving this advanced manipulation capability presents two key challenges: high-level task planning and trajectory execution. For task planning, we leverage Vision Language Models (VLMs) to enable primitive actions such as tool affordance grasping and non-prehensile particle pushing. For trajectory execution, we represent the evolving particle aggregate's contour using truncated Fourier series, providing efficient parametrization of its closed shape. We adaptively compute trajectory waypoints based on group cohesion and the geometric centroid of the aggregate, accounting for its spatial distribution and collective motion. Through real-world experiments, we demonstrate the effectiveness of our methodology in actively shaping and manipulating multi-particle aggregates while maintaining high system cohesion.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE robotics and automation letters, July 2025, v. 10, no. 7, p. 7102-7109en_US
dcterms.isPartOfIEEE robotics and automation lettersen_US
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105005858137-
dc.identifier.eissn2377-3766en_US
dc.description.validate202506 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3769b-
dc.identifier.SubFormID51011-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lee_Iterative_Shaping_Multi.pdfPre-Published version8.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.