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Iterative Shaping of Multi-Particle Aggregates
based on Action Trees and VLM

Abstract—In this paper, we address the problem of ma-
nipulating multi-particle aggregates using a bimanual robotic
system. Our approach enables the autonomous transport of
dispersed particles through a series of shaping and pushing ac-
tions using robotically-controlled tools. Achieving this advanced
manipulation capability presents two key challenges: high-level
task planning and trajectory execution. For task planning, we
leverage Vision Language Models (VLMs) to enable primitive
actions such as tool affordance grasping and non-prehensile
particle pushing. For trajectory execution, we represent the
evolving particle aggregate’s contour using truncated Fourier
series, providing efficient parametrization of its closed shape.
We adaptively compute trajectory waypoints based on group
cohesion and the geometric centroid of the aggregate, accounting
for its spatial distribution and collective motion. Through real-
world experiments, we demonstrate the effectiveness of our
methodology in actively shaping and manipulating multi-particle
aggregates while maintaining high system cohesion.

Index Terms—Robot manipulation, shape control, action trees,
multi-particle manipulation, VLM.

I. INTRODUCTION

THROUGHOUT history, the task of guiding large sheep
flocks to designated pastures has relied primarily on

herding dogs such as Border Collie. Rather than directly
pushing individual sheep, which risks scattering the flock,
these dogs skillfully maneuver around the group, guiding the
entire flock as a cohesive unit towards the desired location
[1]. This herding technique is not limited to the animal world,
it is also commonly observed in our human daily lives as
we often adopt similar strategies when dealing with dispersed
elements. Taking floor sweeping as an example. Instead of
painstakingly collecting each speck of dust individually, we
gather them into a cohesive pile before sweeping it away with
a dustpan. This intuitive approach mirrors the principles of
herding, where the focus is on managing the group as a whole,
rather than individually controlling each element.

This manipulation method is well-suited for multi-particle
aggregation tasks, which involve consolidating dispersed el-
ements and guiding them towards a target location (e.g., a
storage area) while maintaining the group’s cohesion. Taking
inspiration from these examples, we can develop bio-inspired
herding-like approaches for robots to automatically gather,
shape, and transport multi-particle aggregates.

During the initial consolidation stage, this type of robotic
herder can skillfully maneuver around the dispersed elements,
gradually changing the overall shape and guiding it towards
a target point. This strategy ensures that individual objects
are not simply pushed in isolation, but rather gathered into a
cohesive unit. Throughout this process, the robot can compute
and adjust the shape and cohesion of the ensemble, thus,
maintaining its compactness and preventing fragmentation.

Fig. 1. Setup of the addressed multi-particle shaping task.

With the elements gathered into a cohesive pile, the robotic
herder can then focus on shaping and guiding group towards
the designated location (or even along a path). By treating
the ensemble as a unit, the robot can actively change the
group’s morphology to effectively guide it through obstacles
and tight spaces. This process can also reduce the risk of losing
individual components along the way, as it ensures that the
particle ensemble remains cohesive throughout the task.

A. Related Work

To mimic this herding-like guiding strategy, two main
approaches have been explored in the literature: multi-robot
systems [2]–[7] and robotic manipulators [8]–[17]. For the
former, researchers have developed different active methods,
for example, [2] presented a distributed strategy to herd
groups of active (robotic) evaders to a predefined area, akin
to a sheepdog pushing the outmost evader. Similarly, [3]
developed an adaptive density-based interaction controller for
trapping heterogeneous targets with swarm robots, allowing
them to self-organize and adjust the encirclement based on
target strength. Dynamic path planning is also crucial for
herding groups to a destination while avoiding obstacles, as
demonstrated in [6] and [7]. Some multi-agent works have also
addressed the shaping of ensembles, see e.g., [4] and [18].

Robotic manipulators have also been used for shaping and
manipulating multi-particle aggregates. For example, [10]–
[13] have proposed learning-based methods to compute the
dynamics of granular pieces and thus perform the task. To
understand the scene and compute optimal actions, researchers
have developed efficient strategies to learn models from visual
data and text-based scene interpretation [19]–[32].

While there has been substantial work in multi-
object/particle manipulation, the preservation of group cohe-
sion during the manipulation process remains an underex-
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Fig. 2. System Structure: The system consists of a Task Planner with a Shape Manipulation and Control module. An ontological knowledge graph and
VLM describe the scene, interpreted by an LLM for task decomposition. Shape is represented by Fourier Series to generate an action tree based on particle
cohesiveness. An MPC guides manipulation while avoiding obstacles, with the VLM confirming particle status if detection becomes difficult.

plored area. Adopting shepherding strategies based on iterative
shaping of the aggregate is a promising direction that warrants
further investigation.

B. Problem Formulation

Our objective in this work is to develop a tool-based method
to “guide” a group of particles that are initially located outside
a designated gate area. These particles must be iteratively
pushed through a gate to reach a containment box. This can be
viewed as a herding problem, where the particles are akin to a
flock of sheep (although passive) and the robotic tool serves as
a “sheepdog” to guide them towards the desired goal location.
A key requirement to preserve cohesion among the group of
particles throughout the manipulation task. In simple words,
we want the aggregate to Stay Together and Stay Connected.

In our proposed method, the guiding and incremental push-
ing of the ensemble is referred to as “herding”. The slot
or space through which the particles must pass to enter the
container is called the “gate”. The term “cohesion” is used to
describe the degree to which the group of particles is united,
compact, and stuck together. It refers to how tightly packed
or cohesive the particle group is as a whole.

C. Contributions

The original contributions of this work are as follows:
• A novel contour-based strategy to shape and transport

multi-particle systems with non-prehensile actions.
• An iterative action tree for path planning that preserves

the cohesion and holistic nature of the particle group.

• A cohesiveness metric to quantify the compactness of the
particle ensemble.

• A LLM-based planner that leverages the feedback shape
to guide the herding of particles.

The rest of this manuscript is organized as follows: Sec.
II presents the detailed methodology of our approach, Sec.
III reports the empirical results and evaluations, and Sec. IV
provides the final conclusions drawn from this work.

II. METHODOLOGY

To manipulate a group of particles, a systemic methodology
has been developed, as depicted in Fig. 2. The entire process is
divided into two aspects: (1) shape manipulation and control,
and (2) task planning. Each aspect has a macro and a micro
section, where the macro provides an approximate solution,
which is then refined by the micro part.

A. Macro-scale Shape Manipulation

1) Shape Representation: Representing and controlling the
shape of a particle group poses unique challenges compared
to manipulating a deformable soft object. Unlike a soft object,
whose shape is bounded by its volume and mass distribution,
the configuration of a particle group can be highly uncon-
strained. The particles may be distributed in an arbitrary spatial
arrangement, with no inherent limits on their relative positions
or the overall shape of the ensemble. A small movement
of a single particle may not contribute to the majority of
shape-changing. For example, the particles can squeeze into
the spaces among the ensemble with no significant total
shape deformation. Thus, instead of an accurate model to



ITERATIVE SHAPING OF MULTI-PARTICLE AGGREGATES BASED ON ACTION TREES AND VLM 3

represent the details ensemble’s shape and the dynamic motion
of particles, we propose an arbitrary shape representation
approach based on Fourier descriptors, see 2. By representing
the boundary of the particle group using a compact set of
Fourier coefficients, we can track and mould the macro-scale
shape without requiring a detailed dynamical model of the
individual particle motions.

Since no prior information is available about the shape of
the particle group, we extract the contour with computer vision
and represent the contour with a Fourier series. The complex-
valued function f(τ) is used to express the contour as:

f(τ) =

N∑
n=0

cne
in 2πτ

ρ (1)

where cn are the coefficients of the Fourier series, ρ = 2π is
the period of the function, and N is the number of harmonics.
The coefficients cn can be computed with the integral:

cn =
1

2π

∫ 2π

0

f(τ)e−inτdτ (2)

and the contour is reconstructed by summing the contributions
of the Fourier coefficients at each time point τ :

z(τ) =

N∑
n=0

cne
in 2πτ

P (3)

where z(τ) = x(τ) + iy(τ) is the complex-valued position of
the contour at time τ with the range set to [0, 2π]. The scalar
N represents the number of finite Fourier coefficients used.

The choice of the number of Fourier harmonics used to
represent the particle group’s shape is a key parameter in
this approach. A larger number of harmonics allows for a
more detailed and accurate shape representation, capturing
finer contour features of the particle distribution. However,
this increased complexity also comes with more redundant
contour points and a rougher, less streamlined overall shape.
Conversely, using a smaller number of harmonics results in a
more simplified, smoother contour representation, but at the
cost of losing some of the detailed shape information. For
the purposes of this particle herding task, we are primarily
interested in controlling the macro-scale shape of the particle
ensemble, rather than tracking its micro-scale features. There-
fore, a lower number of harmonics is preferred, as it provides
a sufficiently accurate yet compact shape representation that
can be effectively servoed by the robot.

2) Cohesiveness Metric: Maintaining the cohesiveness of a
particle group and keeping the particles compact are crucial
objectives. To quantify this cohesiveness, we introduce a
cohesiveness metric that measures how tightly the particles are
encircled within the group’s contour. Based on the geometric
properties of the particle group, we observe that the distance
between any point on a circle and its centroid is always
constant. In contrast, the distance between a corner point of a
rectangle/square and its centroid is not identical to any other
non-corner point, as it is much farther away. Therefore, a
regular circle represents the optimal enclosure for a group of
objects given the same density, and the size of the group is
irrelevant in this context. The same principle can be applied

Fig. 3. Conceptual representation of the proposed iterative action tree. (1)–(3):
The orange point represents a waypoint on a trajectory, which is positioned
at the centroid of a triangle. (4): The overall trajectory can be obtained
by applying graph theory principles to connect these strategically placed
waypoints.

to other shapes, where a square is better than a wide rectangle
in terms of cohesiveness.

We refer to this concept as the shape regularity, which is
calculated based on the average distance between a set of n
points on the contour of the particle group and the group’s
centroid, compared to the optimal, minimalistic area. The
shape regularity metric ranges from 0 to 1, where higher values
indicate a more regular, compact shape.

Density is another important factor in determining the level
of compactness within a region. It can be calculated by finding
the ratio between the area occupied by the particles and the
total area of the particle group. We can mathematically express
the cohesiveness metric as follows:

ζ =

√
α
π

1
n

∑n
i=1 ||pi −mean(p)||

× α

β
× 100% (4)

where α is the area occupied by the particles and β is the total
area of the particle group calculated by Fourier-series analysis.
pi represents the i-th point on the Fourier-based contour of
the particle group. The function mean(p) is the centroid of
the particle group. The first part of the equation measures the
shape regularity of the particle group by comparing it with
the optimal encirclement (i.e. a circle), where the radius r is
solved from the area equation α = πr2 and is divided by
the average Euclidean distance of the contour points from the
centroid. The second part calculates the density of the particle
group by dividing the occupied area of the particles α by the
total area of the whole group β.

By combining these two factors, the cohesiveness metric ζ
is obtained, which ranges from 0 to 100%, with higher values
indicating a more cohesive particle group. This metric provides
a quantitative measure of the particle group’s cohesion, which
can be used to optimize the particle arrangement and overall
system performance.

3) Path Planning: Iterative Action Tree: To guide the par-
ticle group towards the designated gate location, we propose
a path-planning approach based on an iterative action tree.
This method leverages the spatial distribution of the particles
to define a sequence of waypoints that the robotic tool can
follow to effectively herd the ensemble.

In the first step of our approach, we identify a subset of
particles that are farther away. These distant particles represent
the most outlying members of the aggregated group that
require guidance to be brought back towards the target. We
utilize the cohesion metric to analyze which specific particles
are contributing to a lower overall cohesion of the group. If
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Algorithm 1: Iterative Action Tree for Path Planning
Input: P, gate ▷ Set of farthest points, gate location
Output: Π ▷ Set of trajectories
C0 ← ComputeInitialCentroids(P, gate);
C← C0;
i← 1;
while |Ci| > 2 do

for j ← 1 to (|Ci| − 1) do
c← FindCentroid(Ci−1,j ,Ci−1,j+1, gate);
Ci ← Ci ∪ c;

i← i+ 1;
C← C ∪Ci;

G← Graph(gate,C,P);
Π← ApplyDijkstra(G);
return Π

the cohesion is observed to be low, we select the particles
that are farther away from the group’s centroid for targeted
manipulation. Conversely, if the cohesion is relatively high, we
focus our attention on the particles that are farthest from the
goal location. This strategic selection of particles allows us to
efficiently improve the compactness of the aggregated group
while also drawing it back towards the desired target. The
distance between the points taken is less than the length of the
tool segment to avoid losing ‘sheep’ during the manipulation
stage. In our case, we set the number of points to be 5 based
on our tool’s dimension and we refer to these points as P.

From this set of 5 farthest particles, we compute the initial
centroids by finding the centroids of the triangles formed by
connecting each pair of points with the gate location, see Fig.
3 and Alg. 1. Starting from these initial centroids, we then
iteratively refine the trajectory by computing new centroids.
This is done by finding the centroid of the triangle formed by
the two consecutive centroids from the previous iteration and
the gate location. In other words, the new centroid is calculated
as the average of the two previous centroids and the gate point
(see Fig. 3). This iterative process effectively shrinks the size
of the particle group with each iteration, as the centroids move
closer to the gate. The algorithm continues this process until
only two centroids remain, resulting in a sequence of centroid
sets that progressively reduce the spatial extent of the particle
distribution.

Next, we apply graph theory to the path-finding. We treat the
gate location as the root of a graph, and the computed centroids
with the farthest points as the graph nodes. To identify the
optimal trajectories from the farthest particles to the gate,
we apply a path-finding algorithm: Dijkstra’s algorithm. This
allows us to construct a set of candidate trajectories that the
robotic tool can follow to herd the particles back towards the
desired goal location.

B. Micro-scale Shape Manipulation

In each iteration, the robotic tool approaches and moves
along the waypoints of a candidate trajectory. To mimic
the herding behaviour where the group is gradually moved
closer to the gate, the tool only travels a short distance in

Fig. 4. Before the micro-scale shape refinement, the tooltip (the purple dashed
trajectory) will hit the grey wall. After the refinement, the tooltip (the red
dashed trajectory) will be smoothly avoiding the grey wall.

each herding task. Specifically, the tool moves between two
waypoints at a time, unless the final waypoint is not within the
ensemble or the remaining group size is too small and close
to the gate.

After generating the candidate trajectories using the
centroid-based approach, we apply an off the shelf model
predictive control (MPC) framework to refine the trajectories
and ensure collision-free motion of the robotic tool. The goal
of this refinement is to optimize the tooltip trajectory to avoid
obstacles, such as the grey wall shown in Fig. 4.

We first obtain the dimensions of the tool from the computer
vision system, which allows us to determine the originally
planned start and end points for the tooltip (shown as yellow
points in Fig. 4). We then apply a refinement controller using
these initial tooltip waypoints as the optimization objective.
The controller computes the refined, obstacle-avoiding trajec-
tory (shown as the red dashed line in Fig. 4) by minimizing
a cost function that penalizes deviations from the reference
trajectory and control effort while satisfying the dynamic
constraints and obstacle avoidance requirements.

The refinement controller uses a dynamic model of the tool
and the environment to predict the future states of the system.
This model includes the differential kinematic equations of the
tool, as well as the positions and dimensions of the obstacle
in the workspace, such as the gate walls.

The optimization problem is formulated to minimize a cost
function that penalizes deviations from the desired trajectory,
as well as control inputs that exceed the robot’s actuation limits
(e.g. having a sudden quick move). The optimization is subject
to constraints that ensure the robot’s predicted states do not
collide with any obstacles over the prediction horizon. The
controller optimization problem is formulated as:

J = argmin
u

H−1∑
i=0

||χi − χref||2Q + ||ui||2R (5)

where it is subject to χ̇ = f(χ,u) and g(χi) ≥ 0.
χ = [x, y, θ]⊤ is the state vector of the x-y coordinates and
orientation of the tooltip, u = [v, ω]⊤ is the control input
vector represents the linear velocity v and angular velocity ω
of the tooltip, H is the prediction horizon, χref is the constant
reference state, and Q and R are positive definite weight
matrices. The function g ensures that the tooltip maintains
a minimum distance from the obstacles (i.e. the gate wall).

By solving the optimization problem, we can refine the
trajectory of the tool and determine the optimized boundary
for the tooltip’s motion.
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C. High-Level Symbolic Task Planner
To conduct a long-horizon task that involves logical action

planning, we implemented an LLM-based planner for high-
level symbolic task decomposition and decision-making. The
motion for aggregating particles can be spit into macro and
micro planning, see Fig. 2. In terms of the macro aspect,
it involves task interpretation and action control and we
use a description-based Task Planner for this. In terms of
the micro aspect, it involves the detail decision-making for
small adjustments to improve the performance. For this, we
implement a vision-based task planner.

1) Description-based Task Planner: To interpret the scene
information and the task requirement to generate the next
action with predefined action functions, we implement a high-
level symbolic planner similar to our previous studies [28],
[33]. Instead of fine-tuning an LLM, we use the prompt
approach for this herding task.

We leverage the ontological dynamic knowledge graph
(ODKG) presented in [33] to store and provide the existing
physical and virtual interaction information about the scene.
We then apply the VLM to update the ODKG with the latest
visual observations, generating textual grounding information
that represents the current state of the environment. Then,
an LLM takes the natural language input along with the
grounding information as input and outputs the appropriate
next action function. This iterative process continues, with the
system executing the action, observing the updated scene, and
generating the next action based on the evolving grounding
information.

The available action functions are adjusted to fit our current
particle aggregation scenarios, including “grasp, herding,
push, check, release”. The detailed description of the
functions is stated in Table I.

To increase robustness, a few-shot learning method is
adopted, and several concrete examples are given in the prompt
to illustrate the details of the predefined actions. Consider
a simple particle aggregation task, the possible action se-
quence could be “grasp(), herd(), check(), push(),
check(), release()”, where the dual-arm robot grasps
tools, then applied the shape manipulation module to compute
the trajectory, and the dual-arm robot herds the ‘sheep’ back
to the desired point. The system checks to confirm if all the
‘sheep’ are inside the gate, and the tools are returned to their
original places when the task is considered completed by the
micro task planner (more details are mentioned in the next
section).

2) Vision-based Task Planner: While the text description-
based task planner is sufficient for simple, fast action control, it
may miss some small details that require further adjustments to
enhance performance. For instance, when only a small amount
of particles remain, basic image processing could fail to detect
them due to factors like varying lighting conditions affecting
color detection accuracy.

To ensure no particles are left behind and the task is truly
completed, we complement the image processing with a vision
language model (VLM). When the image processing suggests
the particle count is low, the system captures the scene
and passes it to the VLM for verification. This verification

TABLE I
MOTION FUNCTIONS AND DESCRIPTIONS

Motion Functions Descriptions

Grasp() To move and grasp the tool.
Herd() To slightly push the particle closer to the

gate.
Push() To push the particle directly to the gate.
Check() To check the current herding progress and

calculate the trajectories for the next round
if needed.

Release() To release the tool back to its original
location and the robot to its home position.

process is triggered by the ”check()” action command from
the description-based task planner or the group size of the
particle is smaller than a certain size. If there are no remains,
the task is considered complete, and the ”release()” command
is sent to the robot, instructing it to return the tools and move
back to the home position. If the VLM detects any remaining
particles, the system continues the task.

As the particle ensemble becomes smaller (i.e., with only a
few particles left), some of the candidate trajectories generated
in Sec. II-A3 may become redundant and unnecessary to fol-
low. To address this, the VLM takes the candidate trajectories
along with the current image as input, and outputs the most
suitable starting point for the pushing action. The system
then matches this starting point to the available candidate
trajectories and selects the corresponding path to follow.

III. RESULTS

The performance of the proposed method is evaluated
through a series of experiments using a pair of UR-3 robots
and two T-shaped tools. The robot observes the scene from
the top through a RealSense camera D415. Data is passed to
a Linux-based computer (i.e. Ubuntu 20) with the Robot Op-
erating System (ROS) for image processing, decision-making,
and robot control. We use GPT-4o as the task planner in the
experiment. We evaluate the performance of our method across
several aspects: (1) shape representation, (2) path planning,
and (3) cohesiveness of the particle group shape.

A. Evaluation and Analysis

To validate the robustness of our proposed model-free
shape representation, we tested various particle group sizes
and shapes, ranging from small (74 particles) to large (140
particles), as shown in Fig. 5.

The robot first observes the scene, and the VLM provides
a textual description with the information in the knowledge
graph for the LLM to generate the next action. In the experi-
ment, the robot first grasps the tool, then iteratively calculates
the pushing direction. Through a series of guiding and pushing
steps, the entire particle group is manipulated and guided into
the designated grey container.

We begin by expanding the outline of the particle group
(represented by the blue contour in Fig.5(a)). We then apply
the Fourier series method described in Sec. II-A1 to this
contour to represent the shape of the particle group. To
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Fig. 5. Experiments: (a) Different shapes and amounts of particles are used to evaluate the performance of the proposed shape representation method. The
contour of the particle is expanded and shown in blue lines. The black points are the waypoints of the yellow trajectories. The brown circle represents the
gate point which is towards the grey box; (b) The evolution of the shape described by Fourier-based Representation; (c) The evolutionary changes in distance
between the centroid of the particle group with the gate and the changes of the group size; (d) The evolution of the number of particles remains on the table
and the pushing efficiency of a push; (e) The evolution of the group cohesion. (i) 74 particles; (ii) 95 particles; (iii) 128 particles; (iv) 140 candies.

Fig. 6. Evolution of the cohesion: (i)–(iv) reflect the changes in density,
regularity, and cohesiveness among the particle groups in Fig. 5(i)–(iv) cases.

strike a balance between shape representation fidelity and
computational complexity, we set the number of harmonics
N to 5 and the number of farthest points concerned to 5.

Our experiments demonstrate that our system can suc-
cessfully generate a Fourier-based shape representation to
capture the arbitrary shape of the particle group in various
circumstances. Fig. 5 illustrates the evolution of the particle
group throughout the experiment, showing how the initially

Fig. 7. The white line represents the boundary calculated by the controller to
avoid the tooltip from colliding with the wall during the manipulation process.

large, arbitrary shape is gradually moulded and compacted into
a smaller form.

During the manipulation process, the particles always re-
main cohesive, staying together and connected with one an-
other. To quantify the cohesion of the particle group, we
compare the cohesiveness metrics calculated using Eq. (4).
As shown in Fig. 5, the cohesiveness of the particle shape
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TABLE II
COHESION COMPARISON AND ANALYSIS

Cases
Regular Shapes Experiments

Circle Square Rectangle Ours MPC [34] Landmark [4] Manual
r = 2 r = 4 r = 8 4× 4 8× 8 8× 2

Density Ratio 0.5 0.5 0.5 0.5 0.5 0.5 0.846 0.917 0.698 0.866
Regularity 1.0 1.0 1.0 0.934 0.934 0.682 0.811 0.685 0.828 0.809

Cohesiveness 50.0% 50.0% 50.0% 46.7% 46.7% 34.1% 68.5% 62.4% 57.8% 70.1%

Fig. 8. Performance of adopting direct pushing method: (a) 134 particles; (b)
140 candies; (c) All particles are successfully pushed into the container.

is preserved as the robot guides it to the desired location
using the herding manipulation approach. The evolution of the
cohesiveness, from an initially low rate to the final high rate,
is reflected in the changes in particle density and regularity,
as plotted in Fig. 6. The experiments also demonstrate that
when the particle density is high, the regularity tends to be at
a lower value. This is primarily due to the iterative shaping of
the particle group, which aims to keep it tightly packed while
moving towards the gate. Importantly, the particle group is
maintained as a single, cohesive entity, rather than dividing
into multiple clusters or segmenting with large spaces. This
proves the effectiveness of our proposed system in molding
and herding the particle group as a whole.

With the Fourier-based shape descriptor, the system com-
putes a tree-like trajectory, as shown by the yellow path
with black waypoints in Fig. 5. Given the arbitrary initial
shape of the particle group, this demonstrates the system’s
capability to generate a reasonable trajectory for macro-scale
shape manipulation.

The trajectory is further refined using the controller pro-
posed in Sec. II-B. The prediction horizon is set to be 50.
Fig. 7 shows the tool moving from a point P to the next
waypoint, with the white line indicating the boundary for the
tooltip movement based on the trajectory. The experiments
with various particle shapes and group sizes demonstrate that
the tool is able to push the particle group by following the
trajectory of the action tree while keeping the tooltip from
colliding with the walls.

B. Comparison
To demonstrate the advantage of the herding method over

the direct brute force pushing approach, we conducted a com-
parative evaluation of the particle manipulation performance
in terms of cohesiveness preservation.

We applied the same Fourier-based action tree strategy to
derive the trajectory and executed it using the direct pushing

technique. As shown in Fig. 8, the direct pushing approach
failed to preserve the cohesion of the particle group, resulting
in the division of the aggregate into multiple smaller sub-
groups. In contrast, our proposed shape manipulation action
tree has been proven effective in handling scenarios involving
multiple subgroups, successfully guiding all particles into the
target box, as illustrated in the same figure.

The key distinction between the two methods lies in their
underlying strategies. Our herding-based approach focuses on
guiding the particles as a cohesive group, whereas the direct
pushing technique tends to scatter the particles, leading to a
loss of group cohesiveness.

To further quantify the cohesion properties, we present the
cohesiveness metric results in Table II. We first establish a
baseline by comparing the cohesiveness of regular geometric
shapes, including circles of varying radii, squares, and rectan-
gles, all with a density ratio of 0.5. The results demonstrate
that even when the density is the same, the cohesion can
differ based on the shape. Specifically, circles exhibit the
highest cohesion, followed by squares, while rectangles show
the lowest cohesion due to the increased distance between the
particles and the centroid.

We then apply our proposed cohesiveness metric to eval-
uate the performance of our system against state-of-the-art
manipulation methods, including the MPC approach [34] and
a landmark-inspired technique [4]. The results indicate that
while the traditional MPC method can achieve the highest den-
sity ratio, it exhibits the lowest cohesion among the evaluated
approaches. This is primarily due to its focus on efficiently
aggregating the particles rather than maintaining an optimal
shape.

In contrast, the landmark-inspired method achieves the best
regularity score, producing shapes that are close to the optimal
configuration. This can be attributed to its shape-molding ca-
pabilities. Our proposed approach, on the other hand, generally
demonstrates a better performance in preserving group cohe-
sion, with the averagely high density and regularity values.
However, when compared to manual human aggregation, our
robotic system is still outperformed by approximately 1.5% in
terms of cohesiveness.

We illustrate the performance of the proposed methods in
the accompanying video https://vimeo.com/1043879712.

IV. CONCLUSION

In this work, we have introduced a new Fourier-based
shape control method and an iterative action tree for guiding
and manipulating multiple particles in an aggregation task.
To quantify the effectiveness of the proposed methodology,

https://vimeo.com/1043879712
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we have developed a cohesiveness metric to measure the
compactness of a particle group. We have implemented the
system with the ODKG and VLM for task planning and vali-
dated it using a dual-arm robotic platform. The experimental
results show that our methodology achieves a cohesiveness
of 68%, while the human performance is slightly higher at
70%. Although our system did not outperform the humans,
these results are promising and indicate the potential of our
approach. Moving forward, we plan to continue improving
the cohesion preservation capabilities of our system. Future
research directions may include enhancing the cohesiveness
metric, exploring advanced control strategies and optimiza-
tion techniques, investigating the scalability to handle larger
systems, and extending the system to dynamic environments.
By addressing these aspects, we aim to further advance the
state-of-the-art in multi-object aggregation and manipulation,
with the goal of developing intelligent robotic systems capable
of efficient and cohesive group management in a wide range
of applications.
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