Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113768
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, H-
dc.creatorChu, HK-
dc.creatorSun, Y-
dc.date.accessioned2025-06-23T00:57:53Z-
dc.date.available2025-06-23T00:57:53Z-
dc.identifier.urihttp://hdl.handle.net/10397/113768-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication H. Li, H. K. Chu and Y. Sun, "Improving RGB-Thermal Semantic Scene Understanding With Synthetic Data Augmentation for Autonomous Driving," in IEEE Robotics and Automation Letters, vol. 10, no. 5, pp. 4452-4459, May 2025 is available at https://doi.org/10.1109/LRA.2025.3548399.en_US
dc.subjectAutonomous drivingen_US
dc.subjectRGB-T fusionen_US
dc.subjectSemantic scene understandingen_US
dc.subjectSynthetic image generationen_US
dc.titleImproving RGB-Thermal semantic scene understanding with synthetic data augmentation for autonomous drivingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4452-
dc.identifier.epage4459-
dc.identifier.volume10-
dc.identifier.issue5-
dc.identifier.doi10.1109/LRA.2025.3548399-
dcterms.abstractSemantic scene understanding is an important capability for autonomous vehicles. Despite recent advances in RGB-Thermal (RGB-T) semantic segmentation, existing methods often rely on parameter-heavy models, which are particularly constrained by the lack of precisely-labeled training data. To alleviate this limitation, we propose a data-driven method, SyntheticSeg, to enhance RGB-T semantic segmentation. Specifically, we utilize generative models to generate synthetic RGB-T images from the semantic layouts in real datasets and construct a large-scale, high-fidelity synthetic dataset to provide the segmentation models with sufficient training data. We also introduce a novel metric that measures both the scarcity and segmentation difficulty of semantic layouts, guiding sampling from the synthetic dataset to alleviate class imbalance and improve the overall segmentation performance. Experimental results on a public dataset demonstrate our superior performance over the state of the arts.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE robotics and automation letters, May 2025, v. 10, no. 5, p. 4452-4459-
dcterms.isPartOfIEEE robotics and automation letters-
dcterms.issued2025-05-
dc.identifier.scopus2-s2.0-105001589534-
dc.identifier.eissn2377-3766-
dc.description.validate202506 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3739en_US
dc.identifier.SubFormID50914en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Funden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Li_Improving_RGB-Thermal_Semantic.pdfPre-Published version5.15 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.