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Improving RGB-Thermal Semantic Scene
Understanding with Synthetic Data Augmentation

for Autonomous Driving
Haotian Li ID , Henry K. Chu ID , and Yuxiang Sun ID

Abstract—Semantic scene understanding is an important capa-
bility for autonomous vehicles. Despite recent advances in RGB-
Thermal (RGB-T) semantic segmentation, existing methods often
rely on parameter-heavy models, which are particularly con-
strained by the lack of precisely-labeled training data. To alleviate
this limitation, we propose a data-driven method, SyntheticSeg,
to enhance RGB-T semantic segmentation. Specifically, we utilize
generative models to generate synthetic RGB-T images from the
semantic layouts in real datasets and construct a large-scale, high-
fidelity synthetic dataset to provide the segmentation models with
sufficient training data. We also introduce a novel metric that
measures both the scarcity and segmentation difficulty of semantic
layouts, guiding sampling from the synthetic dataset to alleviate
class imbalance and improve the overall segmentation perfor-
mance. Experimental results on a public dataset demonstrate our
superior performance over the state of the arts.

Index Terms—Semantic Scene Understanding, RGB-T Fusion,
Autonomous Driving, Synthetic Image Generation.

I. INTRODUCTION

RGB-T semantic segmentation [1] enhances scene under-
standing for autonomous vehicles by combining RGB-T

images to improve performance under challenging illumination
conditions [2], leveraging both convolutional neural network
(CNN) [3, 4] and transformer [5, 6]. It provides essential
information for downstream tasks, such as vehicle localization
[7, 8] and autonomous navigation [9]. In supervised RGB-T
semantic segmentation, the hand-labeling process is laborious
and costly, resulting in limited datasets. For example, the largest
public dataset, MFNet dataset [2], contains only 1,568 pairs of
RGB-T images (including 784 flipped pairs) for training. Exist-
ing methods [3–6] focus on designing more advanced models,
but it is challenging to enhance segmentation performance by
upgrading the model when the training set is limited. This
motivates us to explore whether the segmentation performance
could be further improved by generating synthetic image pairs
that mimic real scenes.

To validate this idea in supervised RGB-T semantic seg-
mentation, we need to generate high-fidelity synthetic RGB-
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T images from semantic layouts, which are pixel-level maps
labeling each pixel into different classes. Recent techniques [10,
11] introduce new possibilities for image generation. Several
layout-to-image generative models [12, 13] can generate syn-
thetic RGB images from the semantic layouts. However, these
methods are designed for RGB images and cannot be directly
applied to RGB-T images. To generate high-fidelity synthetic
RGB-T images, we adapt the generative model FreestyleNet
[13] to the widely-used MFNet dataset [2]. Based on this
method, we can generate diverse synthetic images to build a
large-scale synthetic dataset (see Fig. 1).

The generation of a large-scale synthetic dataset offers a
potential solution to the class imbalance problem, which is
a significant factor affecting the accuracy of RGB-T semantic
segmentation. Analysis of experimental results from existing
studies reveals notable disparities in segmentation accuracy
across different classes. In Fig. 2, we show the pixel ratio of
each class (class pixel ratio) in the MFNet training set and the
Intersection-over-Union (IoU) for each class, as evaluated using
two state-of-the-art methods [5, 6]. The results show a clear
correlation between the class pixel ratio and its segmentation
performance: for instance, the Car class, with the highest
pixel ratio, consistently achieves the highest IoU, whereas the
Guardrail class, with the lowest pixel ratio, consistently
records the lowest IoU. However, an anomaly is observed
where the Car Stop class, despite having a higher pixel ratio,
yields a lower IoU compared to the Bump class. This suggests
that segmentation performance is influenced not only by the
class pixel ratio but also by the difficulty of segmenting each
class. Therefore, the class imbalance problem involves not only
disparities in the number of pixels for each class, but also
differences in the segmentation difficulty of each class.

In previous studies, the class imbalance problem in RGB-T
semantic segmentation has not been discussed. To balance class
distribution, object detection tasks typically adjust the number
of samples for each class through resampling [14]. However,
increasing the number of samples for uncommon classes may
lead to overfitting, while decreasing the number of samples for
common classes can result in the loss of important informa-
tion. In addition, Mixup series methods [15–17] generate new
training data by interpolating or mixing samples, but these can
produce unrealistic sample combinations, potentially leading
the model to learn incorrect information. Although some loss
functions [18, 19] have been proposed for addressing class
imbalance in semantic segmentation tasks, they often introduce
hyperparameters that can complicate model tuning.

The large-scale synthetic datasets generated in this study
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Fig. 1. The synthetic RGB-T dataset. Real RGB images, thermal images, and their corresponding semantic layouts are sampled from the MFNet dataset.

Fig. 2. The pixel ratio of each class in the training set of MFNet dataset [2]
and the IoU for each class of CMX [5] and CRM [6]. We choose CMX using
MiT-B2 and MiT-B4 as backbone, and CRM using Swin-S and Swin-B as
backbone. This figure shows the correlation between the class pixel ratio in
the training set and the IoU for that class.

provide new ways to alleviate the class imbalance problem.
To improve segmentation accuracy for rare and difficult-to-
segment classes, we propose a novel metric that measures both
the scarcity and segmentation difficulty of each semantic layout
in the real dataset. This metric guides the sampling from the
pre-generated synthetic dataset, ensuring that classes with fewer
or more challenging examples are adequately sampled. The
main contributions of this work are summarized as follows:

1) We propose a data-driven method, SyntheticSeg, to en-
hance RGB-T semantic segmentation by generating a
large-scale, high-fidelity synthetic dataset. Both the code
and the dataset are open-sourced1.

2) We design a novel metric to measure the scarcity and
segmentation difficulty of each semantic layout, optimiz-
ing sample selection from the synthetic dataset to better
alleviate class imbalance.

3) Our method achieves state-of-the-art performance on the
MFNet dataset [2], demonstrating the effectiveness of our
synthetic dataset and sampling strategy.

This paper is structured as follows. Section II reviews the re-
lated work. Section III describes our proposed method. Section
IV discusses the experimental results. Conclusions and future
work are drawn in the last section.

II. RELATED WORK

A. RGB-T Segmentation Methods
Some methods [20–22] focus on designing novel multimodal

feature fusion modules to enhance the fusion of RGB-T fea-
1Our code and dataset: https://github.com/lab-sun/SyntheticSeg

tures. Li et al. [21] proposed IGFNet, which utilizes a weight
mask from an Illumination Estimation Module (IEM) to se-
lectively integrate RGB-T features. Huang et al. [23] proposed
RoadFormer+ to extracts heterogeneous features from various
modalities and merge the features across different scales and
receptive fields. In addition, Li et al. [24] proposed temporal-
consistent framework to improve the segmentation accuracy and
consistency. Other methods [5, 6] improve RGB-T segmentation
by using larger backbones in feature extraction modules. Shin
et al. [6] introduced a complementary random masking strategy
that boosts segmentation accuracy and robustness by reducing
over-reliance on a single modality. To achieve better results,
there is a trend towards designing models with more parameters
and using larger backbones. These model-driven methods make
them prone to overfitting, especially in tasks like RGB-T
semantic segmentation with limited training data.

B. Generative models
The introduction of Diffusion series networks [10, 11] has

enabled the generation of high-quality images through a dif-
fusion process that gradually transitions from noises to clear
images. Denoising Diffusion Probabilistic Models (DDPMs)
[10] establish a novel link between denoising score matching
and Langevin dynamics. Dhariwal et al. [11] demonstrated that
diffusion models can surpass Generative Adversarial Networks
(GANs) in image synthesis. Building on this foundation, a
series of works [12, 13] propose layout-to-image generative
models to generate RGB images based on semantic layouts.
Wang et al. [12] proposed a framework that processes semantic
layouts and noisy images differently, enhancing the quality
and diversity of generated images. Xue et al. [13] explored
image generation with unseen semantics using pre-trained text-
to-image diffusion models.

C. Class Imbalance Problem
To address the class imbalance in object detection, Saez et al.

[15] enhanced SMOTE with an ensemble-based noise filter, ad-
dressing noisy and borderline examples in imbalanced datasets.
Choi et al. [16] introduced a token-level data augmentation
method for transformers that is efficient and guided by attention.
Venkataramanan et al. [17] presented a data augmentation
technique that interpolates aligned features, combining the
geometry of one image with the texture of another to enhance
representation learning. In addition, specific loss functions
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[25, 26] shift focus away from simple samples and emphasize
the classification of more challenging ones. Some of them
[18, 19] have been proposed to address the class imbalance in
semantic segmentation. Tian et al. [18] introduced Recall Loss,
a new loss function to balance precision and recall in semantic
segmentation. Qiu et al. [19] proposed Subclassified Loss,
which addresses class imbalance by focusing on subclasses.

D. Differences from Existing Methods
Our method differs from the above methods in two aspects:

1) Corresponding to the model-driven method, we propose to
improve RGB-T segmentation through a data-driven method
by creating a large-scale synthetic RGB-T dataset to expand
the training data; 2) We use the high-fidelity synthetic data
to alleviate the class imbalance problem in RGB-T semantic
segmentation.

III. THE PROPOSED METHOD

A. The Overall Framework
The MFNet dataset [2] contains only 2,353 fully annotated

pairs (including 784 flipped pairs) of RGB-T images, with just
1,568 pairs in the training set. As networks used for RGB-T
semantic segmentation grow more powerful, the limited scale
of the dataset has become a critical factor affecting segmen-
tation performance. With the advent of generative models like
Diffusion [11], it is now feasible to expand the training data by
creating high-fidelity synthetic images.

We adapt the layout-to-image FreestyleNet [13] as our gen-
erative model, and the framework of our SyntheticSeg is illus-
trated in Fig. 3. FreestyleNet is trained and validated on COCO-
Stuff [27] and ADE20K [28] to generate RGB images from
semantic layouts. To apply it to the RGB-T image generation
task on the MFNet dataset [2], we separately feed the RGB and
thermal images from the MFNet dataset into FreestyleNet. The
thermal images are first normalized and then converted into
3-channel images to match the input dimensions expected by
FreestyleNet. Then, we modify the class indices of the dataset
to define the number of output classes of the generative model.

As illustrated in Fig. 3 (b), we can feed the semantic layout
from the real training set into the trained RGB-T generative
model to obtain the corresponding RGB-T images. The seman-
tic layout fed into the model and the generated RGB-T images
form a pair of synthetic data suitable for training. In principle,
for one semantic layout, we can generate an infinite number
of corresponding RGB-T images by varying the random seed.
So, if the real dataset contains 𝑁0 pairs of training data, we
can generate 𝑁0 ×𝑁1 pairs of synthetic data, where 𝑁1 is the
number of selected seeds. This method can significantly expand
the scale of fully annotated data available for training. To
alleviate the class imbalance problem, we propose a metric to
assess the scarcity and segmentation challenge of each semantic
layout in the real dataset. Based on this metric, we determine
𝑁2, the number of synthetic data to be sampled for each real
semantic layout. In this way, we have one pair of real RGB-
T image and 𝑁2 pairs of synthetic RGB-T images for each
semantic layout.

Then, we feed RGB-T images from both the real and sam-
pled synthetic datasets into the existing segmentation model,

perform feature extraction and fusion on the RGB and thermal
images, and decode them to obtain the segmentation results.

B. Sampling Mechanism
As shown in Fig. 2, the segmentation performance of dif-

ferent classes in RGB-T semantic segmentation is related to
their respective pixel ratio and segmentation difficulty. To
improve the segmentation performance of classes with low
pixel ratio and high segmentation difficulty, we design a metric
to evaluate the scarcity and segmentation difficulty of each
semantic layout in the training set. This metric determines
the number of corresponding synthetic RGB-T images sampled
from the generated synthetic dataset for that semantic layout.
This sampling mechanism can improve the number and diver-
sity of uncommon and challenging samples.

To evaluate the scarcity and segmentation challenge of each
semantic layout, we first assess the pixel ratio and segmentation
difficulty of the different classes. In the MFNet dataset, for each
class 𝑐 (𝑐 ∈ {1, 2, ..., 𝐶}, where 𝐶 is the total number of classes
excluding the background class 0), the pixel ratio of the class
𝑃𝑐 can be defined as:

𝑃𝑐 =
∑𝑀

𝑖=1 |Ω𝑐|
∑𝐶

𝑐=1
∑𝑀

𝑖=1 |Ω𝑐|
, (1)

where 𝑀 is the total number of images in the training set and
Ω𝑐 is the set of pixels belonging to class 𝑐 in the layout. So,
the numerator represents the sum of pixels for class 𝑐 across
all images, while the denominator represents the sum of pixels
for all classes except the background across all images.

Then, we define 𝜇𝑐 as the class-wise mean loss for class 𝑐,
representing the corresponding segmentation challenge. The 𝜇𝑐
can be defined as:

𝜇𝑐 =

∑𝑀
𝑖=1

∑

𝑗∈Ω𝑐
𝐿𝑖𝑗

∑𝑀
𝑖=1 |Ω𝑐| + 𝜖

, (2)

where 𝐿𝑖𝑗 is the loss for pixel 𝑗 in image 𝑖, calculated by
a pre-trained RGB-T semantic segmentation model. 𝜖 is a
small constant to ensure numerical stability. So, the numerator
represents the sum of losses for class 𝑐 across all images, while
the denominator represents the sum of pixels for class 𝑐 across
all images.

For each semantic layout 𝑖 (𝑖 ∈ {1, 2, ...,𝑀}, where 𝑀 is the
total number of layouts in the training set), we can calculate the
score for scarcity and segmentation challenge of the semantic
layout based on the above obtained 𝑃𝑐 and 𝜇𝑐 . The scarcer the
semantic layout and the more difficult the segmentation, the
higher the score. We can obtain the score 𝛽𝑖 for layout 𝑖 by:

𝛽𝑖 =

∑𝐶
𝑐=1

∑

𝑗∈Ω𝑐
𝜇𝑖𝑗
𝑐

∑𝐶
𝑐=1 |Ω𝑐| + 𝜖

1
min𝑐∈𝐶𝑖

𝑃𝑐
, (3)

where 𝜇𝑖𝑗
𝑐 is the class-wise mean loss for class 𝑐 for pixel

𝑗 in image 𝑖. 𝐶 is the total number of classes excluding the
background class 0. 𝐶𝑖 denotes the set of classes present in
semantic layout 𝑖, meaning the number of classes in 𝐶𝑖 is
less than or equal to 𝐶 . So, we can use this formula as a
metric to measure the scarcity and segmentation challenge of
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Fig. 3. The overall framework of our SyntheticSeg. (a) illustrates the training process of RGB-T generative model; (b) illustrates the pipeline for joint training
of segmentation models using both synthetic and real RGB-T datasets.

Fig. 4. The normalized pixel ratio of each class in the synthetic dataset with
different 𝑅𝑚𝑎𝑥.

the semantic layout. This metric helps determine the number
of synthetic images to sample from the high-fidelity synthetic
dataset. By sorting all semantic layouts in the training set from
small to large using this metric, the number of samples 𝑆𝑖
corresponding to semantic layout 𝑖 can be defined as:

𝑆𝑖 = 𝑚𝑖𝑛(1 +
⌊

(𝑖 + 1)
𝑀

× 𝑅𝑚𝑎𝑥

⌉

, 𝑅𝑚𝑎𝑥), (4)

where ⌊⋅⌉ indicates rounding to the nearest integer, 𝑀 is
the total number of layouts in the training set, and 𝑅𝑚𝑎𝑥 is
the maximum sampling number for a single semantic layout
in the synthetic dataset. By leveraging this mechanism, we
sample more synthetic images for semantic layouts that are both
uncommon in the training set and present high segmentation
challenges.

C. Data Distribution of Synthetic Dataset
Based on the sampling mechanism described above, we

can create different scales of sampled synthetic datasets by
setting different maximum sampling numbers 𝑅𝑚𝑎𝑥 in Equ. (4)
for the original large-scale synthetic dataset. We set 𝑅𝑚𝑎𝑥 to
values of 1, 2, 3, 4, and 5, which resulted in 1,568, 2,744,
3,660, 4,509, and 5,333 sampled synthetic images, respectively.
When 𝑅𝑚𝑎𝑥 = 1, the pixel ratio of each class in the sampled
synthetic dataset is the same as that in the real dataset. In
principle, increasing 𝑅𝑚𝑎𝑥 can raise the pixel ratios in the
uncommon and difficult-to-segment classes. To more clearly
illustrate the variation in pixel ratios as 𝑅𝑚𝑎𝑥 increases, we

normalize these ratios across different 𝑅𝑚𝑎𝑥. The normalized
ratios are presented in Fig. 4. Take the Guardrail class as
an example: prior to normalization. The pixel ratios for 𝑅𝑚𝑎𝑥
values of 1, 2, 3, 4, and 5 are 1.86%, 2.22%, 2.29%, 2.36%,
and 2.39%, respectively. These ratios show a slight upward
trend, but the change is subtle when viewed as absolute values.
However, after normalization, the pixel ratios for 𝑅𝑚𝑎𝑥 values
of 1, 2, 3, 4, and 5 become 0%, 67.92%, 81.13%, 94.34%, and
100%, respectively. This normalization makes the incremental
changes clearer and highlights the trend. Fig. 4 shows that as
𝑅𝑚𝑎𝑥 increases, the pixel ratio of the car class, which is the
most common and easiest to segment, decreases. Meanwhile,
the pixel ratios of other classes for 𝑅𝑚𝑎𝑥 > 1 are higher than
those for 𝑅𝑚𝑎𝑥 = 1 (i.e., the pixel ratios in the real dataset).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Implementation Details
We use the MFNet dataset [2] as the real dataset for our

experiments. The dataset consists of 2,353 pairs (including
784 flipped pairs) of RGB-T images and it includes 9 classes:
Background, Car, Person, Bike, Curve, Car Stop,
Guardrail, Color Cone, and Bump. We follow the same
split scheme as that in [2]: 1,568 pairs for training, 392 for
validation, and 393 for testing. To construct a synthetic dataset,
we feed 1,568 semantic layouts from the real training set into
the trained layout-to-image generation model. We set the class
indices of FreestyleNet [13] to 9 to adjust the number of output
classes, aligning it with the MFNet dataset. Using an NVIDIA
RTX 3090 graphics card, the generation speed for synthetic
RGB and thermal images is 7.1 seconds per image. By setting
20 different random seeds, we obtain a large-scale synthetic
dataset with 31,360 pairs of RGB-T synthetic images and
corresponding semantic layouts. We set 𝑅𝑚𝑎𝑥 = 2 in Equ. (4) to
create the sampled synthetic training set, which includes 2,744
pairs of synthetic RGB-T images.

We train the existing RGB-T semantic segmentation model
using both the sampled synthetic training set and the original
real training set. Since the scale of the sampled synthetic
training set is larger than that of the original real training set,
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TABLE I
THE RESULTS (%) OF THE ABLATION STUDY ON THE TRAINING DATA. 1× AND

2× INDICATE USING THE REAL OR SYNTHETIC TRAINING DATA ONCE OR
TWICE FOR TRAINING, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD.

Training Data mAcc mIoU
Real Synthetic
1× 67.3 58.2

1× 65.6 52.8
1× 1× 72.2 59.9
2× 68.5 57.5

and the quality of the synthetic images is lower than that of the
real images, we oversample the real training set to match the
scale of the sampled synthetic training set. Specifically, if two
pairs of synthetic RGB-T images are sampled for a semantic
layout during training, the corresponding real RGB-T images
are also sampled twice to ensure same sizes of the real and
synthetic training data. This prevents the low-quality synthetic
images from dominating the training process.

B. Ablation Study
To balance performance and model complexity, we use

CMX [5] with a MiT-B2 backbone as the RGB-T semantic
segmentation model for ablation experiments.

1) Ablation on Training Data: To examine the effects of
various training sets on the RGB-T semantic segmentation
model, we first conduct an ablation study presented in Tab. I.
The first row of Tab. I shows the segmentation results obtained
by training with 1,568 pairs of real RGB-T images from the
original MFNet dataset. The second row shows the results
from training with 1,568 RGB-T images generated from 1,568
semantic layouts. Comparing the results, we observe that the
mIoU of training with synthetic data is 5.4% lower than that
of training with real data. This indicates that although the
generated synthetic RGB-T images are visually similar to real
images, there remains a quality gap between them and real
images. The third row of Tab. I shows the segmentation results
obtained by training with 1,568 pairs of real RGB-T images
and the corresponding 1,568 pairs of synthetic RGB-T images.
Training with a combination of real and synthetic images results
in a higher mIoU compared to training with only real images.
This indicates that despite synthetic images not being as high-
quality as real images, joint training enhances the diversity
of the training set. This allows the model to learn from a
wider variety of samples, thereby improving its performance.
To demonstrate that the mIoU improvement in the third row
is not solely due to increased amount of training data, we
conduct the fourth experiment using twice the original real
training set, ensuring the same amount of training data as in
the third experiment. The mIoU from the fourth experiment is
decreased by 2.4% compared to the third and is even lower
than the mIoU obtained with just the original real training
set. This indicates that merely increasing the training data
without enhancing its diversity does not effectively improve
the segmentation performance.

2) Ablation on Sampling Mechanism: We set 20 different
random seeds and generate a synthetic dataset 20 times the scale
of the original dataset. Our goal is to enhance the segmentation

performance of uncommon and challenging classes through the
sampling mechanism, thereby improving overall performance.
We design an ablation experiment, shown in Tab. II, to analyze
the impact of the maximum number of samples 𝑅𝑚𝑎𝑥 on the
results. 𝑅𝑚𝑎𝑥 = 1, 2, 3, 4, 5 means that for each semantic layout
in the original training set, a maximum of 1, 2, 3, 4, or 5 pairs of
synthetic RGB-T images are sampled, respectively. The higher
the 𝑅𝑚𝑎𝑥, the larger the sampled synthetic training set. Tab. II
indicates that the overall segmentation performance of the
model improves when 𝑅𝑚𝑎𝑥 > 1 compared to 𝑅𝑚𝑎𝑥 = 1. The
accuracy (Acc) and IoU for the Car Stop and Guardrail
classes, which have the worst segmentation results, are sig-
nificantly improved when 𝑅𝑚𝑎𝑥 > 1. The model achieves the
highest mAcc and mIoU when 𝑅𝑚𝑎𝑥 = 2, but segmentation
performance gradually deteriorates as 𝑅𝑚𝑎𝑥 increases further.
This indicates that while training with both synthetic and real
images can enhance segmentation performance, an excessive
number of synthetic images can lead to low quality issues and
overfitting, thus degrading model performance. Specifically,
although synthetic data increases the diversity of the training
set, the quality of synthetic images is generally inferior to that
of real images. As the number of synthetic data increases, the
model may learn more noises and inaccurate features.

As shown in Tab. III, we conduct the experiments to analyze
the effect of different sampling mechanisms for synthetic and
real data on model performance. We set 𝑅𝑚𝑎𝑥 = 2 and sampled
2,744 synthetic RGB-T images for joint training. In Tab. III,
the first row shows the segmentation results when the sampling
mechanism for synthetic data considers only the pixel ratio
of each class. The second row shows the results when it
considers only the segmentation difficulty of each class. Both
rows oversample the real training set, resulting in 2,744 pairs
of real RGB-T images used for joint training, to ensure the
training size of synthetic and real data are the same. The results
in the first two rows are better than those obtained by training
only with real datasets (first row of Tab. I). This demonstrates
that using either the pixel ratio or segmentation difficulty for
synthetic data improves the ability of the model. However,
their segmentation performance is inferior to the fourth row,
which considers both pixel ratio and segmentation difficulty
in the synthetic data sampling mechanism. This proves that
considering both factors can simultaneously maximize the
segmentation ability of the model.

Compared to the fourth row, which achieves the best seg-
mentation performance, the third row does not oversample the
real data. It retains 1,568 pairs of real RGB-T images for
joint training and, as a result, obtains worse mIoU, particularly
for the Car Stop and Guardrail classes. These classes
have scarce samples and are more difficult to segment. Sam-
ple scarcity means fewer training samples for the generative
model, and harder segmentation indicates greater difficulty in
extracting semantic features. Consequently, such classes yield
poorer quality synthetic data from the generative model. When
the scale of synthetic data outweighs that of real data in joint
training, these classes further suppress segmentation accuracy
compared to other classes. The Car Stop and Guardrail
classes unexpectedly achieved the highest Acc while obtaining
the lowest IoU. This suggests that false positives dominated
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TABLE II
THE RESULTS (%) OF THE ABLATION STUDY ON THE MAXIMUM SAMPLING NUMBER 𝑅𝑚𝑎𝑥. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

𝑅𝑚𝑎𝑥
Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
1 93.0 88.3 83.0 73.5 74.2 65.0 66.1 51.2 41.1 31.4 36.1 8.2 56.8 52.9 69.2 57.7 68.8 58.5
2 92.9 88.3 84.2 74.9 73.4 65.2 64.6 51.3 43.5 36.3 63.6 14.2 57.9 52.8 74.1 62.1 72.6 60.4
3 93.0 88.4 83.3 74.0 72.7 64.0 65.8 51.7 44.7 36.1 68.2 14.3 56.4 52.6 68.3 57.4 72.4 59.7
4 93.7 88.9 82.7 73.5 73.8 65.0 62.8 51.6 50.6 38.6 53.6 12.3 54.2 51.7 69.3 54.6 71.1 59.4
5 92.8 88.0 83.7 74.4 74.0 64.9 63.4 51.0 46.3 34.5 59.1 12.3 55.3 50.8 70.7 56.6 71.6 59.0

TABLE III
THE RESULTS (%) OF THE ABLATION STUDY ON THE SAMPLING MECHANISM. 𝑃𝑐 IS THE PIXEL RATIO OF EACH CLASS. 𝜇𝑐 IS THE MEAN LOSS OF EACH CLASS. A ✓

UNDER 𝑃𝑐 OR 𝜇𝑐 INDICATES WHETHER 𝑃𝑐 OR 𝜇𝑐 IS INCLUDED IN THE SAMPLING MECHANISM FOR SYNTHETIC DATA. ’OVERSAMP’ INDICATES WHETHER THE REAL
TRAINING SET IS OVERSAMPLED TO ENSURE THE TRAINING SIZE OF SYNTHETIC AND REAL DATA ARE THE SAME. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Sampling Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU
𝑃𝑐 𝜇𝑐 OverSamp Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
✓ ✓ 93.1 88.3 83.1 73.9 73.3 64.8 64.8 50.5 48.2 37.5 54.9 14.0 54.7 49.9 71.5 55.3 71.4 59.2

✓ ✓ 92.7 87.9 82.6 73.7 71.2 63.3 62.9 51.0 44.0 36.4 65.1 16.0 56.4 51.7 64.9 57.1 71.0 59.5
✓ ✓ 92.3 87.9 83.1 74.0 74.8 64.7 67.0 51.1 49.4 34.0 53.4 12.0 55.9 51.9 70.9 59.2 71.8 59.2
✓ ✓ ✓ 92.9 88.3 84.2 74.9 73.4 65.2 64.6 51.3 43.5 36.3 63.6 14.2 57.9 52.8 74.1 62.1 72.6 60.4

TABLE IV
THE PER-CLASS RESULTS (%) OF MODELS USING DIFFERENT METHOD TO ALLEVIATE CLASS IMBALANCE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

CMX(MiT-B2) [5] 92.2 89.4 81.3 74.8 73.4 64.7 63.5 47.3 38.8 30.1 36.3 8.1 53.3 52.4 67.7 59.4 67.3 58.2
Focal Loss [25] 93.9 88.1 84.8 73.6 74.5 63.9 68.8 49.1 42.6 31.7 51.6 9.4 55.6 51.0 70.6 59.5 71.3 58.3

Resampling 93.4 87.7 84.8 74.1 73.5 64.1 63.1 47.7 45.0 27.0 66.1 11.0 58.3 52.4 68.3 54.7 72.4 57.4
SyntheticSeg (Ours) 92.9 88.3 84.2 74.9 73.4 65.2 64.6 51.3 43.5 36.3 63.6 14.2 57.9 52.8 74.1 62.1 72.6 60.4

TABLE V
THE PER-CLASS RESULTS (%) OF MODELS USING DIFFERENT TRAINING SETS. WE USED RTFNET [4], CMX [5], AND CRM [6] WITH DIFFERENT

BACKBONES AS THE RGB-T SEGMENTATION MODELS. Δ REPRESENTS THE MIOU IMPROVEMENT WHEN TRAINING WITH BOTH SYNTHETIC AND REAL
DATA COMPARED TO USING ONLY REAL DATA. THE BEST RESULTS OF EACH BACKBONE ARE HIGHLIGHTED IN BOLD.

Model Backbone Training Data IoU mIoU Δ
Real Synthetic Car Person Bike Curve Car Stop Guardrail Color Cone Bump

RTFNet [4]
ResNet-50 ✓ 86.3 67.8 58.2 43.7 24.3 3.6 26.0 57.2 51.7

↑ 4.4
✓ ✓ 86.5 69.9 60.8 49.5 27.8 8.7 46.0 58.0 56.1

ResNet-152 ✓ 87.4 70.3 62.7 45.3 29.8 0.0 29.1 55.7 53.2
↑ 3.7

✓ ✓ 88.6 71.1 63.3 50.2 30.5 8.0 50.2 51.7 56.9

CMX [5]
MiT-B2 ✓ 89.4 74.8 64.7 47.3 30.1 8.1 52.4 59.4 58.2

↑ 2.2
✓ ✓ 88.3 74.9 65.2 51.3 36.3 14.2 52.8 62.1 60.4

MiT-B4 ✓ 90.1 75.2 64.5 50.2 35.3 8.5 54.2 60.6 59.7
↑ 1.2

✓ ✓ 89.4 74.9 65.0 54.6 38.7 13.6 53.1 60.8 60.9

CRM [6]

Swin-T ✓ 90.0 73.1 63.7 47.9 40.7 9.9 54.4 54.2 59.1
↑ 0.8

✓ ✓ 90.3 75.0 64.1 49.4 48.6 11.1 50.6 52.1 59.9

Swin-S ✓ 90.6 75.5 67.2 48.3 43.4 11.8 56.8 59.3 61.2
↑ 0.8

✓ ✓ 90.7 75.5 65.2 52.0 50.4 15.4 54.8 55.2 62.0

Swin-B ✓ 90.0 75.1 67.0 45.2 49.7 18.4 54.2 54.4 61.4
↑ 0.7

✓ ✓ 91.2 74.4 65.2 50.9 46.4 15.8 54.2 62.0 62.1

their segmentation results, incorrectly judging negative cases
as positive. This further validates the effect of lower-quality
synthetic data on the segmentation results. The above results
demonstrate the effectiveness of oversampling real data to
match the scale of synthetic data.

C. Comparative Study
Based on the ablation experiments described above, we con-

struct the synthetic dataset used in the comparative experiments

by setting 𝑅𝑚𝑎𝑥 = 2 and sampling from the generated large-
scale synthetic dataset. We also oversample the real dataset to
match the size of the synthetic dataset.

1) The Quantitative Results: In Tab. IV, we compare our
SyntheticSeg with focal loss [25] and resampling. All the three
methods use CMX [5] with MiT-B2 as the baseline. Focal
loss is implemented with 𝛾 = 2, emphasizing hard-to-classify
examples. The resampling method oversamples rare samples
during training to emphasize classes with fewer instances.
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Fig. 5. Qualitative comparison for semantic segmentation of RGB-T images on MFNet [2] dataset. The rows from top to bottom are RGB images, thermal
images, ground truth of semantic layouts, results obtained by training CMX [5] with MiT-B2 using real data, and results obtained by training CMX [5] with
MiT-B2 using real and sampled synthetic data. The first four columns and the last four columns are the samples of nighttime and daytime, respectively.

Fig. 6. Visualization of the segmentation suboptimal case. (a) and (b) are real
RGB-T images from MFNet dataset; (c) is the corresponding semantic layout;
(d) and (e) are synthetic RGB-T images generated from (c); (f) is the prediction
of segmentation model.

While focal loss achieves a higher IoU than the baseline
for Curve, Car Stop Guardrail and Bump, it performs
poorly on other classes. Resampling only outperforms the
baseline in Curve and Guardrail, resulting in a lower mIoU
than the baseline. Our method, however, not only significantly
improves segmentation accuracy for objects with few samples
and high segmentation difficulty but also performs well across
other classes.

In Tab. V, we select three RGB-T semantic segmentation
models and compare them by training only with real data versus
training with both synthetic data from our proposed method
and real data. We train each model with multiple backbones
to analyze the impact of different training data on various
architectures and backbone models. The first row for each
model and backbone uses only the real training set, while the
second row uses both the real and synthetic training sets. After
incorporating synthetic training data, the segmentation ability

of RTFNet has been significantly improved. Specifically, the
IoU of the Bump class in RTFNet with ResNet-152 is the only
one that decreases, while other segmentation results show im-
provement. For the three models with different backbones, the
mIoU has consistently been improved after training with both
synthetic and real data. More importantly, these models (except
for CRM with Swin-B) notably enhanced the segmentation IoU
of the Car Stop and Guardrail classes, which have few
samples and are challenging to segment. This aligns with the
intended outcomes of our proposed sampling mechanism. The
results show that our method consistently improves the overall
segmentation performance.

2) The Qualitative Demonstrations: To better demonstrate
the effectiveness of our SyntheticSeg, we select 4 samples taken
at night and 4 samples taken during the day, which are displayed
in Fig. 5. After training with synthetic and real data, the ability
to segment uncommon and difficult-to-segment classes of the
existing models has significantly been improved. For example,
the models trained with synthetic and real data in the second
cases can better segment the Guardrail class, which has
the lowest pixel ratio. This result aligns with the conclusions
from the quantitative experiments above. We also find that
training with synthetic and real data improved the resistance
to false detection of the models. For example, CMX trained
with only real data in the sixth, seventh, and eighth cases detect
the background as the Curve class. This issue is significantly
reduced after adding synthetic data to the training process. This
improvement is due to the increased number and diversity of
training samples from the synthetic dataset.

3) Suboptimal Case Analysis: Although the above quanti-
tative and qualitative analyses have proved the effectiveness
of our method, there are still cases where the segmentation
performance is not satisfactory, as shown in Fig. 6. Specifically,
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Fig. 6(f) illustrates that the prediction results are not accurate
for both the Person class with a large sample size and the
Car Stop class with a small sample size. The first reason is
that the image quality of distant objects in real RGB images
is poor. As seen in Fig. 6(a), the model struggles to extract
rich semantic information and accurate contours of distant
persons in dark environments. Besides, for classes with a small
sample size, the quality of synthetic images generated by the
model is suboptimal. The generated Car Stop and Color
Cone classes in Fig. 6(d) and (e) and their corresponding
semantic layouts in Fig. 6(e) lack spatial consistency, which
means that if the synthetic images dominate the training, the
segmentation accuracy will be suppressed. In addition, since
the synthetic RGB and thermal images are obtained separately
through the generative model, their background parts cannot
guarantee spatial consistency. Despite our method has been
proven to effectively improve the segmentation performance,
this spatial inconsistency may limit the further improvement.

V. CONCLUSIONS AND FUTURE WORK

We proposed here a data-driven method, SyntheticSeg, to
enhance RGB-T segmentation by using synthetic data aug-
mentation. We created high-quality synthetic RGB-T images
and built a large-scale dataset to diversify training samples.
The new metric we introduced effectively guides sampling
from synthetic datasets by considering the scarcity of semantic
layouts and the difficulty of segmentation. This method not only
alleviates the class imbalance problem but also improves the
overall segmentation accuracy. The experimental results show
that our method achieves state-of-the-art performance on the
MFNet dataset.

However, our method has some limitations. First, the quality
of synthetic images is still inferior to real images, particu-
larly for scarce classes, leading to suppressed segmentation
performance when synthetic images dominate the training.
Second, the synthetic RGB and thermal images cannot be
accurately aligned, especially in the background, and their
physical consistency is uncertain. Our future work would focus
on developing a generative model that generates synthetic RGB-
T image pairs with improved physical and spatial consistency,
potentially enhancing the segmentation performance.
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