Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113767
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, H-
dc.creatorChu, HK-
dc.creatorSun, Y-
dc.date.accessioned2025-06-23T00:57:53Z-
dc.date.available2025-06-23T00:57:53Z-
dc.identifier.urihttp://hdl.handle.net/10397/113767-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication H. Li, H. K. Chu and Y. Sun, "Temporal Consistency for RGB-Thermal Data-Based Semantic Scene Understanding," in IEEE Robotics and Automation Letters, vol. 9, no. 11, pp. 9757-9764, Nov. 2024 is available at https://doi.org/10.1109/LRA.2024.3458594.en_US
dc.subjectAutonomous vehiclesen_US
dc.subjectMulti-modal fusionen_US
dc.subjectRGB-Thermalen_US
dc.subjectSemantic segmentationen_US
dc.subjectTemporal consistencyen_US
dc.titleTemporal consistency for RGB-Thermal data-based semantic scene understandingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9757-
dc.identifier.epage9764-
dc.identifier.volume9-
dc.identifier.issue11-
dc.identifier.doi10.1109/LRA.2024.3458594-
dcterms.abstractSemantic scene understanding is a fundamental capability for autonomous vehicles. Under challenging lighting conditions, such as nighttime and on-coming headlights, the semantic scene understanding performance using only RGB images are usually degraded. Thermal images can provide complementary information to RGB images, so many recent semantic segmentation networks have been proposed using RGB-Thermal (RGB-T) images. However, most existing networks focus only on improving segmentation accuracy for single image frames, omitting the information consistency between consecutive frames. To provide a solution to this issue, we propose a temporal-consistent framework for RGB-T semantic segmentation, which introduces a virtual view image generation module to synthesize a virtual image for the next moment, and a consistency loss function to ensure the segmentation consistency. We also propose an evaluation metric to measure both the accuracy and consistency for semantic segmentation. Experimental results show that our framework outperforms state-of-the-art methods.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE robotics and automation letters, Nov. 2024, v. 9, no. 11, p. 9757-9764-
dcterms.isPartOfIEEE robotics and automation letters-
dcterms.issued2024-11-
dc.identifier.scopus2-s2.0-85204027464-
dc.identifier.eissn2377-3766-
dc.description.validate202506 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3739en_US
dc.identifier.SubFormID50913en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Funden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Li_Temporal_Consistency_RGB-Thermal.pdfPre-Published version5.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.