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Temporal Consistency for RGB-Thermal Data-based
Semantic Scene Understanding

Haotian Li ID , Henry K. Chu ID , and Yuxiang Sun ID

Abstract—Semantic scene understanding is a fundamental ca-
pability for autonomous vehicles. Under challenging lighting con-
ditions, such as nighttime and on-coming headlights, the semantic
scene understanding performance using only RGB images are
usually degraded. Thermal images can provide complementary
information to RGB images, so many recent semantic segmenta-
tion networks have been proposed using RGB-Thermal (RGB-T)
images. However, most existing networks focus only on improving
segmentation accuracy for single image frames, omitting the
information consistency between consecutive frames. To provide a
solution to this issue, we propose a temporal-consistent framework
for RGB-T semantic segmentation, which introduces a virtual
view image generation module to synthesize a virtual image for
the next moment, and a consistency loss function to ensure the
segmentation consistency. We also propose an evaluation metric
to measure both the accuracy and consistency for semantic
segmentation. Experimental results show that our framework
outperforms state-of-the-art methods.

Index Terms—Temporal Consistency, Multi-modal Fusion,
RGB-Thermal, Semantic Segmentation, Autonomous Vehicles.

I. INTRODUCTION

SEMANTIC scene understanding based on semantic image
segmentation is an essential capability for autonomous

vehicles. It provides fundamental perceptual information for
downstream tasks, such as localization [1–3] and autonomous
navigation [4–6]. Most existing semantic segmentation net-
works are designed with RGB images from visible cameras.
Due to the intrinsic limitations of visible cameras, the perfor-
mance of these networks may be degraded under challenging
lighting conditions, such as nighttime, glares, and on-coming
headlights. Recently, semantic segmentation based on RGB-
Thermal (RGB-T) images has been proposed to address this
issue [7], since thermal imaging cameras do not use visible
lights for imaging and thermal images can provide comple-
mentary information to RGB images. Research progress has
been made using convolutional neural network (CNN) [8–11]
and Transformer [12–14].

However, most RGB-T semantic segmentation networks pri-
marily focus on enhancing segmentation accuracy solely for
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(a) Sample RGB (b) Sample thermal (c) Sample output

(d) Synthesized RGB (e) Synthesized thermal (f) Synthesized output
Fig. 1. Inconsistent segmentation results across consecutive frames. The RGB-
T images in the first row are sampled from the MFNet [8] dataset. The RGB-T
images in the second row are the synthesized images at the next moment.
The thermal images are visualized with the jet color map. We use the recent
network CMX [13] to obtain the segmentation results. The blue and purple
colors in the segmentation maps represent bike and car, respectively.

single image frames, overlooking the segmentation consistency
between consecutive frames [8, 9, 13, 14]. Fig. 1 shows
the segmentation results by a recent network CMX [13] for
a sample RGB-T image from the MFNet dataset [8], and
a synthesized RGB-T image at the next moment generated
by our virtual view image generation (VVIG) module. We
can observe the degraded segmentation performance across
consecutive frames. For example, the segmentation result for
the synthesized RGB-T image wrongly classifies the car as a
bike, resulting in inconsistent segmentation across consecutive
frames (highlighted by the red ellipses). The inconsistent seg-
mentation results are not expected by most downstream tasks.
To improve the segmentation consistency across consecutive
frames, some works on semantic segmentation have tried to use
optical flow [15, 16]. But in real-world applications, especially
under challenging lighting conditions, it is difficult to compute
accurate optical flow.

To provide a solution to this issue, we propose a temporal-
consistent framework to improve the segmentation consistency
for RGB-T semantic segmentation. We design a loss function
in this framework to ensure consistency for the segmentation
results across different frames. We also introduce a new eval-
uation metric to measure both consistency and accuracy for
semantic segmentation. The main contributions of this letter
are summarized as follows:

∙ We design a novel temporal-consistent framework for
RGB-T semantic segmentation, including a new method to
synthesize images at the next moment. Our code is open-
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sourced1.
∙ We design a novel loss function to ensure segmentation

consistency across different frames.
∙ We design a new evaluation metric to measure both

accuracy and consistency for semantic segmentation.

II. RELATED WORK

A. RGB-T Semantic Segmentation

RTFNet [9] uses the two-encoders-one-decoder fusion struc-
ture to fuse RGB and thermal images. CACFNet [17] utilizes
cross-modal attention and cascaded fusion to enhance RGB-T
feature complementarity. MMSMCNet [18] uses modal mem-
ory fusion and morphological multi-scale assistance to enhance
cross-modal features. Liang et al. [19] proposed the Explicit
Attention-Enhanced Fusion (EAEF), which adapts to different
cases of RGB-T data availability. Lv et al. [20] introduced
CAINet, which leverages auxiliary tasks and global context to
enhance the complementary reasoning and detailed aggregation
of multi-modal features. Dong et al. [21] proposed EGFNet
that uses prior edge maps and multi-modal fusion modules
to enhance the feature maps. Inspired by Vision Transformer
(ViT) [22] and Segmentation Transformer (SETR) [23], several
transformer-based methods [13, 14, 24] have been applied to
RGB-T semantic segmentation. Zhang et al. [13] introduced
CMX, an extension of Segformer [12] to multi-modal tasks.

B. Segmentation Consistency

To ensure temporal consistency for semantic segmentation,
Cheng et al. [15] proposed a bi-directional framework to obtain
the foreground segmentation and optical flow at the same time.
The optical flow is used as the complementary information for
the segmentation task. Nilsson et al. [16] applied optical flow
for video segmentation. They enhanced segmentation accuracy
and consistency by utilizing the unlabeled RGB images in the
dataset and propagating labels through optical flow. Zhang et al.
[25] proposed AuxAdapt to improve the temporal consistency
of RGB segmentation networks without using optical flow, by
learning from the own decisions of the network and a small
auxiliary network.

C. Evaluation Metric for Consistency

The widely used intersection-over-union (IoU) is the standard
evaluation metric for measuring segmentation accuracy. To
evaluate segmentation consistency, Liu et al. [26] used optical
flow to warp the segmentation map of the current frame to
align with the previous frame, and computed IoU between
the warped segmentation map and the original segmentation
map of the previous frame. They define this as the temporal
consistency (TC) score. Zhang et al. [25] extended the TC
metric to evaluate the segmentation consistency. Park et al.
[27] proposed a perceptual-consistency-based metric, which
calculates the temporal consistency by comparing the average
cosine similarity of the feature maps of consecutive frames.

1https://github.com/lab-sun/Temporal-Consistent-RGBT-Segmentation

D. Difference from Existing Work
The existing works on RGB-T semantic segmentation focus

on improving segmentation accuracy for single image frames.
We use the information of consecutive frames to enhance the
segmentation consistency and further improve the segmentation
accuracy.

The existing consistency evaluation metrics only measure
the consistency of segmentation results, regardless of the seg-
mentation correctness. So, these metrics may fail to evaluate
the performance when the segmentation results of consecutive
frames produce the same errors for the same object. We
introduce a novel metric that takes into account the ground
truth of the segmentation result. The metric evaluates both the
accuracy and the consistency of a segmentation network.

III. THE PROPOSED METHOD

A. The Framework Overview
To study segmentation consistency, we need datasets with

temporal-sequential images. But the existing RGB-T dataset,
such as the MFNet dataset [8], includes only discrete image
frames. So, we propose the virtual view image generation
(VVIG) module to synthesize the sequential frames based on
the existing dataset. The overview of our proposed temporal-
consistent framework is shown in Fig. 2. Img1, which represents
the current frame, is the real image sampled from the MFNet
[8]. We use the VVIG module to synthesize Img2, which is
the frame at the next moment. We choose CMX [13] as the
segmentation network. It utilizes a unified fusion approach
with a Cross-Modal Feature Rectification Module (CM-FRM)
to calibrate bi-modal features. Additionally, a Feature Fusion
Module (FFM) for long-range context exchange, achieving
state-of-the-art performance across various RGB-X modalities
[13]. In this work, the encoders and decoders for the two frames
are the same. They share the same weights. The CMX network
can be replaced with other RGB-T semantic segmentation
networks.

B. Virtual View Image Generation Module
As aforementioned, we propose the VVIG module to synthe-

size the image at the next moment. Fig. 3 shows the pipeline.
To mimic the camera’s viewpoint at the next moment, we need
to simulate both its rotation and translation. For rotation, we
randomly generate the Euler angles 𝛼, 𝛾 , and 𝛽 about the �̂�, 𝑌 ,
and �̂� axes in the image coordinate system. The ranges of the
angles are: 𝛼 ∈ [−5◦, 5◦], 𝛾 ∈ [−10◦, 10◦], 𝛽 ∈ [−10◦, 10◦].
We use the Euler angles and the camera intrinsic matrix to
calculate the virtual view transformation (VVT) matrix, which
is then used to transform the original image. 𝑀VVT is found
by:

𝑀VVT = 𝐾𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾)𝐾−1, (1)

where 𝐾 represents the camera intrinsic matrix. The VVT
matrix becomes equivalent to a homography matrix when the
camera motion involves only rotations, without any translations.
Detailed derivation and descriptions are presented in the Ap-
pendix.

After simulating rotation with the VVT matrix and obtaining
the distorted image, we discard the parts that appear beyond
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Fig. 2. The overview of our temporal-consistent framework for RGB-T semantic segmentation. Img1 is sampled from MFNet. Img2 is generated using our
virtual view image generation (VVIG) module. The encoders and decoders are borrowed from CMX [13]. The warped prediction �̂�12 and ground truth 𝑦2 are
also generated by the VVIG module. The jet color map is used here to visualize the thermal images.

Fig. 3. The pipeline of our VVIG module. 𝛼, 𝛾 , 𝛽 are respectively the randomly
generated Euler angles about the �̂�, 𝑌 , �̂� axes. The VVT matrix (i.e., 𝑀VVT)
is generated from the Euler angles and the intrinsic matrix. The blue dashed
box on the transformed image represents the shape of the original image after
the 𝑀VVT transformation. The red dashed box on the cropped image shows the
largest inner rectangle within the valid range for cropping. The virtual image
is obtained from the cropped image by interpolation.

the field-of-view of the image, indicated by the white areas
in the blue dashed box. The remaining area within the blue
dashed box is then cropped using the red dashed box to its
largest inner rectangle, defining the effective pixel area of
the virtual image. Finally, the cropped image is resized to
match the original image’s resolution by using interpolation
to produce the virtual image. These cropping and resizing
operations effectively simulate the forward movement of the
camera. To maximize the protection of edge information in
objects, we utilize bilinear interpolation for RGB and thermal
images, and nearest-neighbor difference for ground truth during
warping and resizing operations. As shown in Fig. 2, we feed
an RGB image, a thermal image, a ground-truth image, and the
prediction of Img1 into the VVIG module. The module then
generates the corresponding Img2.

C. The Loss Functions
As shown in Fig. 2, the framework conducts semantic

segmentation on Img1 and Img2 separately. We adopt the
cross-entropy loss (i.e., 𝑠𝑒𝑔1 and 𝑠𝑒𝑔2) for the semantic
segmentation task. In addition, we apply the Dice loss [28]
(i.e., 𝑑𝑖𝑐𝑒) to further improve the segmentation accuracy.

We propose two consistency loss functions (i.e., 𝑐𝑜𝑛 and
𝑐𝑜𝑛−𝑎𝑐𝑐) to improve the segmentation consistency across con-
secutive frames. Specifically, 𝑐𝑜𝑛 transforms the segmentation

map of Img1 to Img2 through 𝑀VVT, leading to �̂�12, which
is then compared with the segmentation map of Img2, �̂�2.
The greater the similarity between �̂�12 and �̂�2, the better the
segmentation consistency.

First, we have to transform the segmentation map of the
current frame to the position of next frame by �̂�12 = 𝑀VVT�̂�1,
where 𝑀VVT is used as the true value. Then, 𝑐𝑜𝑛 is calculated
to measure the inconsistency between the consecutive frames:

𝑐𝑜𝑛 = 1 − 1
𝐶

𝐶
∑

𝑐=1

2
∑𝐻×𝑊

ℎ=1,𝑤=1 �̂�
(𝑐,ℎ,𝑤)
12 ⋅ �̂�(𝑐,ℎ,𝑤)

2
∑𝐻×𝑊

ℎ=1,𝑤=1(�̂�
(𝑐,ℎ,𝑤)
12 + �̂�(𝑐,ℎ,𝑤)

2 + 𝜎)
, (2)

where ℎ, 𝑤 and 𝑐 denote the row, column and class indices of
predictions, respectively. 𝐻 ×𝑊 denotes the number of pixels
and 𝐶 denotes the number of classes. 𝜎 is a very small positive
number that prevents the denominator from being zero. In this
paper, we set 𝜎 = 1 × 10−7.

Considering that 𝑐𝑜𝑛 only constrains the consistency be-
tween the segmentation maps of consecutive frames, if the
segmentation maps make the same incorrect prediction for the
same pixel, the loss function cannot constrain them effectively.
So, we propose 𝑐𝑜𝑛−𝑎𝑐𝑐 based on 𝑐𝑜𝑛. This loss function
incorporates the ground truth of the segmentation map of Img2,
𝑦2, and measures the consistency among �̂�12, �̂�2, and 𝑦2:

𝑐𝑜𝑛−𝑎𝑐𝑐 = 1

− 1
𝐶

𝐶
∑

𝑐=1

2
∑𝐻×𝑊

ℎ=1,𝑤=1 �̂�
(𝑐,ℎ,𝑤)
12 ⋅ �̂�(𝑐,ℎ,𝑤)

2 ⋅ 𝑦(𝑐,ℎ,𝑤)
2

∑𝐻×𝑊
ℎ=1,𝑤=1(�̂�

(𝑐,ℎ,𝑤)
12 + �̂�(𝑐,ℎ,𝑤)

2 + 𝑦(𝑐,ℎ,𝑤)
2 + 𝜎)

,
(3)

where 𝑦2 is used as a mask to improve the segmentation
accuracy.

D. The Evaluation Metric
Intersection-over-Union (IoU) is a widely-used metric that

evaluates segmentation accuracy for a single frame. Temporal
consistency (TC) [26] is proposed to evaluate the consistency
of RGB segmentation across consecutive frames. While TC can
capture the segmentation consistency for consecutive frames, it
fails to account for scenarios where consecutive frames make
the same incorrect prediction for the same target.
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(a) IoU (b) TC (c) CA
Fig. 4. (a) Intersection over union (IoU): 𝑦2 = 𝐴 + 𝐵, represents the ground
truth of Img2; �̂�2 = 𝐵 + 𝐶 , represents the prediction of Img2. (b) Temporal
consistency (TC): �̂�12 = 𝐴 + 𝐵, represents the prediction of Img1 mapped to
Img2 by 𝑀VVT; �̂�2 = 𝐵 +𝐶 , represents the prediction of Img2. (c) Consistent
accuracy (CA): �̂�12 = 𝐴+𝐵+𝐷+𝐸, represents the prediction of Img1 mapped
to Img2 by 𝑀VVT; �̂�2 = 𝐵 + 𝐶 + 𝐸 + 𝐹 , represents the prediction of Img2;
𝑦2 = 𝐷 + 𝐸 + 𝐹 + 𝐺, represents the ground truth of Img2..

To address this issue, we propose consistent accuracy (CA),
which evaluates segmentation results in terms of both con-
sistency and accuracy. Fig. 4 shows the schematic diagrams
of IoU, TC and CA. According to the definition of IoU,
it is calculated as 𝐼𝑜𝑈 = 𝐵

𝐴+𝐵+𝐶 × 100%, indicating the
similarity between the prediction and the ground truth. Liu et
al. [26] proposed TC to measure the segmentation consistency
of RGB images. As shown in Fig. 4(b), TC is defined as
𝑇𝐶 = 𝐵

𝐴+𝐵+𝐶 × 100%, which measures the similarity between
the current frame, �̂�2, and the warped previous frame, �̂�12, by
optical flow. As aforementioned, it is challenging to calculate
optical flow under unsatisfactory lighting conditions. So, we
warp the current frame using 𝑀VVT and utilize the ground
truth 𝑦2 as a supervision signal to enhance the segmentation
accuracy. As shown in Fig. 4(c), CA is defined as 𝐶𝐴 =

𝐸
𝐴+𝐵+𝐶+𝐷+𝐸+𝐹+𝐺 × 100%. 𝐶𝐴 = 100% only if the predictions
of consecutive frames are consistent and match the ground-
truth labels. Otherwise, CA is decreased by both inconsistency
and inaccuracy.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets
We used the MFNet dataset [8] for our experiments. The

dataset consists of 2,390 pairs of RGB-T images. It has 9
classes (i.e., unlabelled background, car, person, bike, curve,
car stop, guardrail, color cone, and bump). We used the same
split scheme as [8] to train our network, that is, 1568 pairs for
training, 392 pairs for validation, and 393 pairs for testing.

B. Training Details
We implement our proposed method in PyTorch and train the

networks with an NVIDIA RTX 3090 (24GB RAM) graphics
card. We employ the CMX [13] network, utilizing the same
dual-stream encoder to extract features from RGB and thermal
modalities, and a decoder that integrates these features. Specifi-
cally, we adopt the four-stage Mix Transformer (MiT) encoder,
pre-trained on ImageNet [29]. This hierarchically structured
Transformer encoder can avoid interpolation of positional codes
and hence obtain multi-scale features. We choose MiT-B2 as
the backbone to trade-off the performance and computational
expenses. The decoder is a multi-layer perceptron (MLP) with
an embedding dimension of 512, as proposed in SegFormer
[12]. We train the network with the AdamW optimizer, using
a weight decay rate of 1 × 10−3. The initial learning rate is
6 × 10−5, and we use the poly learning rate schedule [30]. We

TABLE I
RESULTS (%) OF THE ABLATION STUDY ON THE VVIG MODULE WITH

DIFFERENT LOSSES. IMG1 AND IMG2 INDICATE THE LOSSES APPLIED TO THE
CURRENT FRAME AND NEXT FRAME, RESPECTIVELY. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD FONT. WE USE THE AVERAGE RESULTS GENERATED

FROM THE SAME 3 SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS
OF TC (%) AND CA (%).

No. Losses mPre mAcc mF1 mIoU TC CA
Img1 Img2

(A) 𝑠𝑒𝑔1 — 75.93 67.32 69.85 58.19 34.58 22.29
(B) 𝑠𝑒𝑔1 𝑠𝑒𝑔2 75.41 70.37 70.06 58.76 34.52 22.34
(C) 𝑠𝑒𝑔1 𝑠𝑒𝑔2+𝑑𝑖𝑐𝑒2 74.91 73.86 71.21 59.47 34.69 22.74
(D) 𝑠𝑒𝑔1 𝑠𝑒𝑔2+𝑐𝑜𝑛 74.66 70.07 70.57 58.84 35.86 22.89
(E) 𝑠𝑒𝑔1 𝑠𝑒𝑔2+𝑐𝑜𝑛−𝑎𝑐𝑐 74.03 69.74 70.15 59.02 34.58 22.61
(F) 𝑠𝑒𝑔1+𝑑𝑖𝑐𝑒1 𝑠𝑒𝑔2 72.90 74.53 72.47 60.33 34.30 22.70
(G) 𝑠𝑒𝑔1+𝑑𝑖𝑐𝑒1 𝑠𝑒𝑔2+𝑑𝑖𝑐𝑒2 76.93 71.04 72.99 60.78 32.35 22.65
(H) 𝑠𝑒𝑔1+𝑑𝑖𝑐𝑒1 𝑠𝑒𝑔2+𝑐𝑜𝑛 74.01 74.17 71.46 59.90 36.40 23.29
(I) 𝑠𝑒𝑔1+𝑑𝑖𝑐𝑒1 𝑠𝑒𝑔2+𝑐𝑜𝑛−𝑎𝑐𝑐 74.49 72.26 71.75 60.01 34.41 22.77

TABLE II
RESULTS (%) OF THE ABLATION STUDY ON THE COMPONENTS OF THE VVIG

MODULE. ROT. AND TRA. INDICATE THE ROTATION AND TRANSLATION OF
THE VVIG MODULE, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD FONT. WE USE THE AVERAGE RESULTS GENERATED FROM THE
SAME 3 SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS OF TC

(%) AND CA (%).

No. VVIG mPre mAcc mF1 mIoU TC CA
Rot. Tra.

(A) 75.93 67.32 69.85 58.19 34.58 22.29
(B) ✓ 73.47 74.87 71.55 59.75 34.58 22.61
(C) ✓ 70.93 74.50 70.74 58.89 35.47 22.71
(D) ✓ ✓ 74.01 74.17 71.46 59.90 36.40 23.29

use mean precision (mPre), mean accuracy (mAcc), mean F1
(mF1), mean intersection over union (mIoU), TC and CA for
the quantitative evaluations.

C. Ablation Study
1) Ablation on the VVIG Module: To demonstrate the effec-

tiveness of the VVIG module, we use CMX [13] based on MiT-
B2 as the baseline, denoted as variant (A) in Tab. I. Variant (A)
only uses the cross-entropy loss, which is the same as [13]. As
shown in Tab. I, variants (B) to (I) all employ the VVIG module
to generate the virtual view images to improve the segmentation
consistency. To improve the segmentation accuracy, we use the
Dice loss 𝑑𝑖𝑐𝑒 and two cross-entropy losses, 𝑠𝑒𝑔1 and 𝑠𝑒𝑔2
for the segmentation of Img1 and Img2, respectively. According
to the definitions given in Eq. (2) and Eq. (3), we use 𝑐𝑜𝑛 and
𝑐𝑜𝑛−𝑎𝑐𝑐 to represent our proposed consistency losses for the
segmentation of Img2.

From Tab. I, despite achieving around 60% mIoU, all of
the variants have a low TC consistency less than 40%. Our
proposed consistency evaluation metric CA is even lower
than 25%. This shows that existing methods, despite having
good accuracy for single frames, suffer from poor consistency.
From the results of variants (B) to (I), we find that the
VVIG module can enhance the segmentation accuracy and
consistency, resulting in higher mF1, mIoU, TC and CA than
those of variant (A). The results of variants (C) and (F)
show that the Dice loss can greatly enhance the segmentation
accuracy, achieving much higher mF1 and mIoU. However,
despite the significant improvement in mIoU for variant (F)
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over variant (A), the TC decreases. The reason may be that TC
only measures segmentation consistency between consecutive
frames without considering segmentation accuracy. On the
other hand, our proposed CA follows the same trend as mIoU,
since it incorporates the ground truth of the segmentation map
as a supervision signal, and the CA reaches 100% only when
the segmentation results of consecutive frames are perfectly
accurate and consistent.

By comparing the results of variants (C), (D) and (E), we find
that 𝑑𝑖𝑐𝑒 greatly enhances the segmentation accuracy, 𝑐𝑜𝑛
greatly enhances the segmentation consistency, and 𝑐𝑜𝑛−𝑎𝑐𝑐
achieves a balance between segmentation accuracy and con-
sistency. From variant (F), we use 𝑑𝑖𝑐𝑒, 𝑐𝑜𝑛 and 𝑐𝑜𝑛−𝑎𝑐𝑐
on Img2, resulting in variants (G), (H) and (I), respectively.
Although variant (G) has the highest mIoU, its TC and CA
are the lowest. Notably, TC of variant (G) is even lower than
that of variant (A), indicating that 𝑑𝑖𝑐𝑒 reduces segmentation
consistency despite its improvement in segmentation accuracy.
While the mIoU of variant (H) is slightly lower than that of
variant (G), it shows a significant improvement over that of
the baseline variant (A). Importantly, variant (H) achieves the
highest TC and CA, demonstrating that 𝑐𝑜𝑛 can substantially
enhance segmentation consistency while improving segmenta-
tion accuracy. Compared to variant (H), variant (I) achieves
higher segmentation accuracy but lower segmentation consis-
tency. Variant (I) represents a compromise between variants (G)
and (H), as it incorporates the ground truth of the segmentation
map as a constraint in 𝑐𝑜𝑛−𝑎𝑐𝑐 . Our experimental results and
analyses indicate that, in semantic segmentation task, there
is an inherent trade-off between segmentation accuracy and
consistency. The above experiments demonstrate, emphasizing
more on the segmentation accuracy would hinder consistency to
some degree. Segmentation consistency is essential in practical
applications. So, in this work, we adopt segmentation consis-
tency as an overall evaluation metric, by which variant (H) is
the best method.

To better analyze the impact of simulating rotation and
translation in the VVIG module, an ablation study is conducted,
the results of which are displayed in Tab. II. Variant (A)
represents the results without the VVIG module, variant (B)
represents the results with the VVIG module simulating only
rotation, variant (C) represents the results with the VVIG
module simulating only translation, and variant (D) represents
the results using the VVIG module that simulates both rotation
and translation. The results indicate that simulating rotation
significantly enhances mIoU, thereby improving segmentation
accuracy. Meanwhile, simulating translation notably improves
TC and CA, thereby enhancing segmentation consistency. Si-
multaneously simulating both rotation and translation leads to
great improvements in both segmentation accuracy and consis-
tency, thereby demonstrating the importance of simulating both
rotation and translation in the VVIG module.

2) Ablation on Evaluation Metric: To further analyze the
segmentation consistency performance of our proposed variants
(G), (H), and (I), we conduct a comparative analysis in terms
of the TC and CA across various classes within the MFNet
dataset [8], as depicted in Fig. 5. TC measures the temporal
consistency of the semantic segmentation results between con-

Fig. 5. The ablation study results (%) of temporal consistency (TC) and
consistent accuracy (CA). The horizontal axis shows each class in the MFNet
dataset [8]. Variants (G), (H) and (I) are the three variants of our method.
The figure illustrates the superiority of variant (H) in terms of segmentation
consistency. The figure is best viewed in color.

TABLE III
RESULTS (%) OF THE ABLATION STUDY ON THE COEFFICIENTS OF THE LOSS

FUNCTIONS. 𝛼 AND 𝛽 INDICATE THE IMPORTANCE OF DICE LOSS AND
CONSISTENCY LOSS, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD FONT. WE USE THE AVERAGE RESULTS GENERATED FROM THE
SAME 3 SETS OF RANDOM EULER ANGLES AS THE FINAL RESULTS OF TC

(%) AND CA (%).

No. Coefficients mPre mAcc mF1 mIoU TC CA
𝛼 𝛽

(A) 0.5 0.5 73.70 73.07 71.27 59.56 35.02 22.87
(B) 0.5 1.0 73.20 71.26 70.09 58.63 34.94 22.53
(C) 0.5 2.0 71.26 74.81 71.47 59.12 36.36 23.06
(D) 1.0 0.5 71.37 77.53 71.78 59.89 35.22 22.76
(E) 1.0 1.0 74.01 74.17 71.46 59.90 36.40 23.29
(F) 1.0 2.0 71.44 74.51 70.76 58.74 36.31 23.10
(G) 2.0 0.5 72.99 72.54 70.47 58.85 34.75 22.49
(H) 2.0 1.0 73.58 73.64 71.48 59.85 35.70 23.01
(I) 2.0 2.0 70.23 73.00 69.90 58.20 36.16 22.84

secutive frames. As shown in Fig. 5, variant (H) achieves the
highest TC for most classes, except for person, where variant
(I) performs better. It is noteworthy that variant (H) shows a
significant improvement in TC for the car stop and guardrail
compared to other variants, indicating that it has a greater effect
on the segmentation consistency of challenging objects.

Contrary to the TC metric, the CA metric employs the
ground truth of segmentation map as the supervision signal.
This approach ensures that, in scenarios where segmentation
results across consecutive frames are consistent but inaccurate,
CA does not yield relatively high values as observed with TC.
This distinction is exemplified in the results for the car stop
and guardrail depicted in Fig. 5. Despite the equal ranking
of the three variants in TC and CA for both car stop and
guardrail, the gap between the three in TC is significantly
larger than that in CA. This implies that evaluating solely
the consistency of segmentation results introduces considerable
uncertainty, particularly when the segmentation results of con-
secutive frames exhibit the same error for a specific object. So,
by leveraging the truth value of segmentation map, CA can
more accurately reflect the segmentation performance. Variant
(H) achieves the highest CA in almost all classes, indicating
that its segmentation results are both accurate and consistent.

3) Ablation on Coefficients of Loss Functions: From the re-
sults in Tab. I, we select variant (H) as the best method. It uses
the cross-entropy loss and Dice loss on Img1, and cross-entropy
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TABLE IV
THE COMPARATIVE PER-CLASS RESULTS ON THE MFNET DATASET. WE USE ACC (%) AND IOU (%) FOR EACH CLASS AND THE MACC (%) AND MIOU (%) FOR ALL THE CLASSES. THE RESULTS
DEMONSTRATE THE SUPERIORITY OF OUR METHOD, WITH THE TOP TWO RESULTS IN EACH COLUMN HIGHLIGHTED IN BOLD AND UNDERLINE. THE PUBLICATION VENUE IS FOLLOWED BY THE

PUBLICATION YEAR. SINCE CMX WITH MIT-B4 BACKBONE HAS NOT RELEASED THE ACC RESULTS BASED ON ITS PRE-TRAINED WEIGHTS, WE USE “-” TO INDICATE THE DATA ABSENCE.

Method Backbone Venue Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

RTFNet [9] ResNet-152 RAL’19 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2
ABMDRNet [10] ResNet-50 CVPR’21 94.3 84.8 90.0 69.6 75.7 60.3 64.0 45.1 44.1 33.1 31.0 5.1 61.7 47.4 66.2 50.0 69.5 54.8
CENet [31] ResNet RAL’23 92.0 85.8 78.9 70.0 74.9 61.4 64.8 46.8 39.8 29.3 65.7 8.7 54.1 47.8 77.1 56.9 71.8 56.1
CACFNet [17] ConvNeXt-B TIV’23 95.9 89.2 93.6 69.5 82.0 63.3 74.0 46.6 49.0 32.4 45.8 7.9 69.8 54.9 82.1 58.3 76.7 57.8
MMSMCNet [18] MiT-B3 TCSVT’23 96.2 89.2 93.2 69.1 83.4 63.5 74.4 46.4 56.6 41.9 26.9 8.8 70.2 48.8 77.5 57.6 75.2 58.1
EAEFNet [19] ResNet-152 RAL’23 95.4 87.6 85.2 72.6 79.9 63.8 70.6 48.6 47.9 35.0 62.8 14.2 62.7 52.4 71.9 58.3 75.1 58.9
CMX [13] MiT-B2 TITS’23 92.2 89.4 81.3 74.8 73.4 64.7 63.5 47.3 38.8 30.1 36.3 8.1 53.3 52.4 67.7 59.4 67.3 58.2
CMX [13] MiT-B4 TITS’23 - 90.1 - 75.2 - 64.5 - 50.2 - 35.3 - 8.5 - 54.2 - 60.6 - 59.7
CMNeXt [24] MiT-B4 CVPR’23 94.4 90.2 83.9 74.2 77.3 63.8 55.7 45.4 47.5 38.1 32.1 13.4 55.8 51.8 63.8 58.6 67.8 59.3
CAINet [20] MobileNet-V2 TMM’24 93.0 88.5 74.6 66.3 85.2 68.7 65.9 55.4 34.7 31.5 65.6 9.0 55.6 48.9 85.0 60.7 73.2 58.6
EGFNet [21] ConvNeXt TITS’24 96.5 89.8 92.1 71.6 84.8 63.9 76.1 46.7 44.6 31.3 38.7 6.7 71.1 52.0 78.1 57.4 75.6 57.5
Ours-dice MiT-B2 93.1 88.8 89.2 74.5 76.4 64.5 69.3 47.8 52.0 36.6 25.6 22.0 64.7 53.7 70.0 60.9 71.0 60.8
Ours-con MiT-B2 93.7 89.1 88.5 74.7 79.4 65.6 70.6 46.3 44.2 37.6 62.2 11.1 62.7 54.5 67.1 62.0 74.2 59.9
Ours-con-acc MiT-B2 94.0 88.9 86.7 75.4 76.6 63.4 67.0 47.0 46.7 39.0 49.3 12.6 61.3 55.7 69.6 59.9 72.3 60.0

TABLE V
THE COMPARATIVE PER-CLASS RESULTS BASED ON RTFNET [9]. WE USE ACC (%) AND IOU (%) FOR EACH CLASS AND THE MACC (%) AND MIOU (%) FOR ALL THE
CLASSES. WE USE RESNET-50 AND RESNET-152 AS BACKBONE TO COMPARE RTFNET AND OUR METHOD. THE RESULTS DEMONSTRATE THE SCALABILITY OF OUR

METHOD, WITH THE BEST RESULTS OF EACH BACKBONE ARE HIGHLIGHTED IN BOLD.

Method Backbone Car Person Bike Curve Car Stop Guardrail Color Cone Bump mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

RTFNet [9] ResNet-50 91.3 86.3 78.2 67.8 71.5 58.2 59.8 43.7 32.1 24.3 13.4 3.6 40.4 26.0 73.5 57.2 62.2 51.7
Ours-con 91.3 87.5 85.8 71.1 73.9 60.6 61.7 43.8 35.0 22.5 43.3 3.8 45.4 38.4 70.0 54.5 67.3 53.3
RTFNet [9] ResNet-152 93.0 87.4 79.3 70.3 76.8 62.7 60.7 45.3 38.5 29.8 0.0 0.0 45.5 29.1 74.7 55.7 63.1 53.2
Ours-con 91.5 86.5 83.3 71.3 74.5 61.7 67.5 47.0 43.4 28.4 14.1 2.4 45.7 41.2 73.2 50.5 65.8 54.1

loss and our proposed consistency loss on Img2. Among them,
the Dice loss focuses on improving the segmentation accuracy
of the current frame, while the consistency loss focuses on
improving segmentation consistency. The total loss is calculated
as:

𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑒𝑔1 + 𝛼𝑑𝑖𝑐𝑒 + 𝑠𝑒𝑔2 + 𝛽𝑐𝑜𝑛, (4)

where 𝛼 and 𝛽 denote the importance of Dice loss and consis-
tency loss, respectively. We set 𝛼 and 𝛽 to 0.5, 1.0, and 2.0 in
turn, to investigate their influences on the segmentation results.

As shown in Tab. III, variant (E) obtains the highest mIoU,
TC, and CA, indicating that the method achieves the best
segmentation accuracy and consistency when 𝛼 = 1.0 and
𝛽 = 1.0. Comparing variants (G) and (I), we find that variant
(I) has much higher TC and CA but much lower mIoU
than variant (G). This means that variant (I) achieves better
consistency but worse accuracy, indicating that a higher 𝛽 can
enhance segmentation consistency while suppressing accuracy.
Meanwhile, variant (G) achieves higher accuracy but at the cost
of consistency, indicating that overemphasizing segmentation
accuracy may hinder consistency, which is consistent with the
conclusion from the previous results. The comparison between
variants (A) and (C), and variants (D) and (F) leads to the same
conclusion. This also demonstrates that balancing segmentation
accuracy with consistency is a challenging problem and worth
further investigating. In summary, when 𝛼 = 1 and 𝛽 = 1, our
method achieves the highest mIoU, TC, and CA at the same
time, which indicates that our method and our loss function
effectively balance segmentation accuracy and consistency.

D. Comparative Experiments

We adopt CMX with MiT-B2 as the segmentation network
for our framework. Based on different loss function strategies,
we select variants (G), (H) and (I) in Tab. I for comparison,
naming them Ours-dice, Ours-con and Ours-con-acc.
They all use MiT-B2 as the backbone. We compare our method
with RTFNet [9], ABMDRNet [10], CENet [31], CACFNet
[17], MMSMCNet [18], EAEFNet [19], CMX [13], CMNeXt
[24], CAINet [20], and EGFNet [21]. CMX utilizes both MiT-
B2 and MiT-B4 as backbones, while CMNeXt uses MiT-B4
as its backbone. Since CMX with MiT-B2 has not reported its
per-class Acc, and CMNeXt with MiT-B4 has not reported its
per-class Acc and IoU, we get the missing results by testing the
networks with their pre-trained weights. However, CMX with
MiT-B4 does not provide any pre-trained weights, so we could
not compare its Acc with the other methods.

As shown in Tab. IV, our proposed methods achieve the
highest mIoU among the state-of-the-art methods. Specifically,
compared with CMX using the same MiT-B2 backbone, our
methods achieve a 1.7% to 2.6% higher mIoU. Compared with
CMNeXt that uses the larger backbone MiT-B4, our methods
also increase mIoU by 0.2% to 1.1%. Moreover, the mAcc of
Ours-con with MiT-B2 is 6.9% higher than that of CMX with
MiT-B2. Despite achieving the highest mAcc, CACFNet [17]
suffers from a low mIoU, which implies a high rate of false
positives. Therefore, we can conclude that our method not only
improves the segmentation consistency but also achieve the best
overall accuracy compared to other methods.

To demonstrate the scalability of our method to other RGB-
T semantic segmentation networks, we choose the well-known
CNN-based RTFNet [9] as our segmentation network and
keep the parameter quantities unchanged. Tab. V compares the
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Fig. 6. Qualitative demonstration for RGB-T semantic segmentation on the MFNet [8] dataset. The rows from top to bottom are RGB images, thermal images,
ground truth, CMX results, Ours-dice results, Ours-con results, and Ours-con-acc results. All of the variants use MiT-B2 as backbones. The 1st and
2nd columns are the 1st set of images, the 3rd and 4th columns are the 2nd set of images, the 5th and 6th columns are the 3rd set of images, and the 7th and
8th columns are the 4th set of images. Among them, the first two sets and the last two sets are the images of nighttime and daytime, respectively.

segmentation results of the original RTFNet and Ours-con
based on different backbones. With ResNet-50 as the backbone,
Ours-con outperforms RTFNet in segmentation accuracy
(Acc and IoU) for all classes except car stop and bump, and
increases mAcc and mIoU by 5.1% and 1.6%, respectively.
With ResNet-152 as the backbone, Ours-con significantly
increases the Acc of guardrail from 0.0% to 14.1%, and the
IoU of color cone from 29.1% to 41.2%, indicating that our
method can significantly enhance the segmentation accuracy for
challenging objects. Ours-con with ResNet-152 also achieves
better segmentation accuracy that increases mAcc and mIoU by
2.7% and 0.9%, respectively.

E. Qualitative Demonstrations
Fig. 6 qualitatively demonstrates sample segmentation re-

sults. In each set of images, the left column is the original
current frame from the MFNet [8] dataset, and the right
column is the synthesized frame generated by our method.
The segmentation consistency can be seen by comparing the
consecutive frames. We can see that our three methods gen-
erally outperform CMX with MiT-B2 in terms of segmentation
accuracy, especially for small objects such as car stops (refer
to the 3rd and 4th columns). We can also find that Ours-con
achieves the most consistent results. Moreover, the results of

all three of our methods are more consistent than those of CMX.
Specifically, the segmentation results of CMX show significant
inconsistencies for all sets of images. Similarly, the segmen-
tation results of Ours-dice for 1st, 2nd, and 3rd sets are
also inconsistent. The same is observed for Ours-con-acc
in the 2nd, 3rd, and 4th sets. Although Ours-con presents
the lowest mIoU among our methods, it shows much better
consistency than the other methods. This result is consistent
with the findings from the ablation experiments presented in
Tab. I.
Ours-con, which uses the proposed consistency loss,

achieves the best segmentation accuracy and has much better
consistency than the other methods. So, in real applications,
Ours-con could be preferable to Ours-dice, which sacri-
fices consistency for accuracy.

V. CONCLUSIONS AND FUTURE WORK

This letter presents the viewpoint that consistency should be
valued in RGB-T semantic segmentation in addition to accu-
racy. To this end, we proposed a temporal-consistent framework
for consistent and accurate RGB-T semantic segmentation.
The proposed framework includes a VVIG module, which can
synthesize a virtual frame at the next moment. Moreover, the
proposed consistency loss improves segmentation consistency
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without compromising accuracy. The proposed metric is able
to evaluate segmentation results in terms of both accuracy and
consistency. The experimental results show that our method
outperforms the state-of-the-art networks. In future work, we
will investigate advanced techniques to better leverage the
spatial consistency and temporal continuity of RGB-T informa-
tion across consecutive frames. Moreover, we will extend our
methods to other scenarios that require temporal consistency.

APPENDIX

Assume that a 3-D object point 𝑃 is captured in two
consecutive frames (Img1 and Img2), and the pixels for 𝑃 on
the two images are 𝑝1 and 𝑝2. From the pinhole camera model,
we have: 𝑝1 ≃ 𝐾𝑃 , 𝑝2 ≃ 𝐾(𝑅𝑃 + 𝑡), where 𝐾 is the camera
intrinsic matrix, 𝑅 and 𝑡 are respectively the rotation matrix and
translation vector between the consecutive frames, ≃ denotes
equivalence up to a scale.

Assume that the camera motion includes only rotations (i.e.,
𝑡 = 0), we have 𝑝2 ≃ 𝐾𝑅𝑃 . Since 𝑃 ≃ 𝐾−1𝑝1, we have
𝑝2 ≃ 𝐾𝑅𝐾−1𝑝1. Since 𝑅 = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾), we have 𝑝2 ≃
𝐾𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾)𝐾−1𝑝1, where 𝛼, 𝛾 , 𝛽 are respectively the
Euler angles about the �̂�, 𝑌 , �̂� axes. Since 𝑝2 ≃ 𝑀VVT𝑝1, we
have 𝑀VVT = 𝐾𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾)𝐾−1.

Comparing 𝑀VVT to the homography matrix 𝐻 = 𝐾(𝑅 −
𝑡𝑛𝑇

𝑑 )𝐾−1, where 𝑛𝑇 and 𝑑 are respectively the normal vector
and the distance to the plane from the origin point, we can
find that 𝑀VVT = 𝐻 if there is no translational movement
(i.e., 𝑡 = 0). So, we use the homography matrix as the VVT
matrix in this work.
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