Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113673
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorWang, Sen_US
dc.creatorZhang, Den_US
dc.creatorShi, Ken_US
dc.creatorWang, Yen_US
dc.creatorWei, Wen_US
dc.creatorWu, Jen_US
dc.creatorZhang, Men_US
dc.date.accessioned2025-06-17T07:40:48Z-
dc.date.available2025-06-17T07:40:48Z-
dc.identifier.isbn979-8-3313-0506-2en_US
dc.identifier.urihttp://hdl.handle.net/10397/113673-
dc.description25th Annual Conference of the International Speech Communication Association, Interspeech 2024, Kos, Greece, September 1-5, 2024. ISCA 2024en_US
dc.language.isoenen_US
dc.publisherInternational Speech Communication Associationen_US
dc.rightsCopyright © (2024) by International Speech Communication Association All rights reserved.en_US
dc.rightsThe following publication Wang, S., Zhang, D., Shi, K., Wang, Y., Wei, W., Wu, J., Zhang, M. (2024) Global-Local Convolution with Spiking Neural Networks for Energy-efficient Keyword Spotting. Proc. Interspeech 2024, 4523-4527 is available at https://doi.org/10.21437/Interspeech.2024-642.en_US
dc.subjectGlobal-Local spiking convolutionen_US
dc.subjectKeyword spottingen_US
dc.subjectSpiking neural networksen_US
dc.titleGlobal-local convolution with spiking neural networks for energy-efficient keyword spottingen_US
dc.typeConference Paperen_US
dc.identifier.spage4523en_US
dc.identifier.epage4527en_US
dc.identifier.doi10.21437/Interspeech.2024-642en_US
dcterms.abstractThanks to Deep Neural Networks (DNNs), the accuracy of Keyword Spotting (KWS) has made substantial progress. However, as KWS systems are usually implemented on edge devices, energy efficiency becomes a critical requirement besides performance. Here, we take advantage of spiking neural networks' energy efficiency and propose an end-to-end lightweight KWS model. The model consists of two innovative modules: 1) Global-Local Spiking Convolution (GLSC) module and 2) Bottleneck-PLIF module. Compared to the hand-crafted feature extraction methods, the GLSC module achieves speech feature extraction that is sparser, more energy-efficient, and yields better performance. The Bottleneck-PLIF module further processes the signals from GLSC with the aim to achieve higher accuracy with fewer parameters. Extensive experiments are conducted on the Google Speech Commands Dataset (V1 and V2). The results show our method achieves competitive performance among SNN-based KWS models with fewer parameters.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation25th Annual Conference of the International Speech Communication Association (INTERSPEECH 2024), Kos, Greece, 1-5 September 2024, p. 4523-4527en_US
dcterms.issued2024-
dc.relation.conferenceConference of the International Speech Communication Association [INTERSPEECH]en_US
dc.description.validate202506 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3717c-
dc.identifier.SubFormID50836-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of China under Grant; Sichuan Science and Technology Programen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
wang24p_interspeech.pdf3.06 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.