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Abstract
Thanks to Deep Neural Networks (DNNs), the accuracy of Key-
word Spotting (KWS) has made substantial progress. How-
ever, as KWS systems are usually implemented on edge de-
vices, energy efficiency becomes a critical requirement besides
performance. Here, we take advantage of spiking neural net-
works’ energy efficiency and propose an end-to-end lightweight
KWS model. The model consists of two innovative modules:
1) Global-Local Spiking Convolution (GLSC) module and 2)
Bottleneck-PLIF module. Compared to the hand-crafted fea-
ture extraction methods, the GLSC module achieves speech fea-
ture extraction that is sparser, more energy-efficient, and yields
better performance. The Bottleneck-PLIF module further pro-
cesses the signals from GLSC with the aim to achieve higher ac-
curacy with fewer parameters. Extensive experiments are con-
ducted on the Google Speech Commands Dataset (V1 and V2).
The results show our method achieves competitive performance
among SNN-based KWS models with fewer parameters.
Index Terms: Keyword spotting, Spiking neural networks,
Global-Local spiking convolution.

1. Introduction
Keyword Spotting (KWS) systems recognize predefined com-
mands, which are always deployed on edge devices as an in-
terface for human-machine interaction. Current mainstream
KWS models implemented with Artificial Neural Networks
(ANNs) [1] achieve outstanding accuracy. However, limited
by endurance, CPU resources, and portability, deploying and
running ANNs on edge devices for extended periods can be dif-
ficult. Therefore, designing a high-accuracy, lightweight, and
energy-efficient KWS model for edge devices is a hot topic that
awaits a solution.

As the third-generation neural networks, Spiking Neural
Networks(SNNs) [2, 3] have gained widespread attention due to
their asynchronous event-driven architecture [4] and ultra-low
energy consumption. The spiking event-driven mechanism [5]
of SNNs computes only when necessary, resulting in sparse in-
formation transmission and significantly reduced energy con-
sumption. This is suitable for resource-constrained edge de-
vices. Besides, it has been proved that accumulate (AC) opera-
tion is compact and energy-efficient compared with Multiply-
and-Accumulate (MAC) operation [6]. Therefore, when de-
ployed on hardware, SNNs using AC operation expend much
less energy in comparison with MAC-dependent DNNs [7].

The advantages of SNNs have motivated many researchers
to apply them to KWS tasks [8, 9]. However, many attempts
based on deep SNNs still use FFT [10], MFCC [11] to pre-
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process raw speech (wav) which needs massive computing re-
sources. This goes against to our original intention of using
SNNs to implement energy-efficient KWS models. To avoid
this problem, some researchers have attempted to directly uti-
lize raw speech signals with low-resource-consuming convo-
lutional operations [12]. For instance, Philipp et al. [13] pro-
posed the end-to-end streaming model by dilated convolution
with stride = 1. However, this approach fails to compress
the length of long speech sequences, leading to evident feature
redundancy. What’s more, Yang et al. [14] proposed an end-to-
end deep residual SNN model, and it demonstrated a notably
high level of recognition accuracy. However, their approach
employs the integrate-and-fire (IF) neuron model, which lacks
a membrane potential decay mechanism. This will result in fre-
quent spikes firing, leading to higher computational energy con-
sumption in SNNs[15].

In this paper, we constructed an end-to-end SNN-based
KWS model to address the issues above. We tested the accuracy
of our model on the Google Speech Commands datasets [16]
(V1 and V2) and compared its model size with the related works
based on SNNs. Encouragingly, compared with similar SNN-
based models, our model achieves competitive performance on
smaller model sizes. Finally, energy efficiency calculations
prove that our model consumes 10× less energy than ANNs
with the same structure. Hence, our SNN-KWS model aligns
perfectly with the requirements of edge devices for high accu-
racy, lightweight structure, and low energy consumption. The
major contributions of this paper can be summarized as follows:
• Global-Local Spiking Convolution (GLSC) module: We de-

sign the GLSC module to achieve better and more energy-
efficient spiking convolution. It can compress the length of
long speech sequences layer by layer while considering both
global and local features.

• Bottleneck-PLIF module: To achieve a more lightweight and
efficient SNN architecture, we combine the Bottleneck struc-
ture in ResNet [17] with more efficient Parametric Leaky
Integrate-and-Fire (PLIF) [15] neurons to create a more
lightweight classifier.

• By integrating the proposed GLSC and Bottleneck-PLF mod-
ules, we construct a novel end-to-end SNN-KWS model.
Our SNN-KWS model achieves competitive performance in
both accuracy and parameter efficiency within the domain of
SNN-based models.

2. Preliminaries
In this section, we will give an overview of two essential com-
ponents in our model: end-to-end speech feature extraction and
spiking neural networks. Additionally, we will analyze the chal-
lenges associated with these components.
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Figure 1: A comparative analysis between single convolution and global-local convolution. (a) Dilated Conv1d with stride = 1.
The hidden layers and output features are highly redundant, as evidenced by the gray blocks representing the overlapping features.
(b) Dilated Conv1d with stride ̸= 1. The receptive field exponentially increases with the dilation factor d, leading to a loss of local
information as white blocks. (c) and (d) the Global-Local convolution method. it can achieve a good balance between global and local
features in long speech sequences, and maintain a consistent focus on local features when the stride ̸= 1.

2.1. End-to-end Convolution for Speech Features

To alleviate the energy consumption caused by conven-
tional speech feature extraction methods, such as FFT [10],
MFCC [11], the most popular approach is to use direct con-
volution methods for end-to-end feature extraction. They can
be summarized as:

f (t) ∗ g (t) =
∫ t

0

f (u) g (t− u) du (1)

g (t) is regarded as different convolution kernels and f (t) is
denoted as original speech wave sequences. While the convolu-
tion methods have been successfully applied in speech feature
extraction, certain challenges still require further resolution.

For example, the parameters in Conv1d [18] increase with
the expansion of the receptive field, resulting in the redundancy
of parameters in g (t). The dilated Conv1d (D-Conv1d) [19]
was proposed to address this problem. However, as illustrated
in Figs 1(a) and 1(b), dilated convolution [13] with stride = 1
suffers from redundancy of features and stride ̸= 1 may lead to
loss of local features. Therefore, there is no convolution method
currently that can simultaneously address both the redundancy
of parameters and the loss of local features.

2.2. Spiking Neural Networks

SNNs encode information through binary spikes over time and
work in an event-driven manner, which has a great advantage in
energy consumption. As a basic unit of SNNs, various spiking
neurons are proposed to emulate the mechanism of biological
neurons. Among them, the Leaky Integrate-and-Fire (LIF) [20]
model is widely used due to its simplicity. The dynamics of a
LIF neuron can be expressed as follows:

U t+1,n
i = τU t,n

i +

l(n−1)∑
j=1

wn
ijO

t+1,n−1
j (2)

where τ is the constant leaky factor, U t+1,n
i is the membrane

potential of neuron i in the nth layer at the time step t+ 1, and∑l(n−1)
j=1 wn

ijO
t+1,n−1
j denotes the pre-synaptic inputs for neu-

ron i. When the membrane potential U t+1,n
i exceeds the firing

threshold Vth, the neuron i fires a spike Ot+1,n
i and U t+1,n

i re-
set to 0. The firing function and hard reset mechanism can be
described by Eq. 3 and Eq. 4, respectively.

Ot+1,n
i = H

(
U t+1,n

i − Vth

)
(3)

U t+1,n
i = U t+1,n

i (1−Ot+1,n
i ) (4)

where H denotes the Heaviside step function.
Many studies have effectively leveraged the energy effi-

ciency of spiking neurons to develop energy-efficient SNN-
KWS models [21, 22]. However, these methods have not taken
into account the lightweight structural requirements of edge de-
vices. Therefore, we aim to design a more lightweight and
energy-efficient SNN-KWS model by utilizing more advanced
structures and spiking neuron models.

3. Method
In this section, we propose an end-to-end SNN-KWS model that
effectively addresses the limitations mentioned in Section 2.
The overall structure of the model is illustrated in Fig.2, which
mainly comprises two innovative modules: 1) the GLSC mod-
ule and 2) the Bottleneck-PLIF module.

Figure 2: Our SNN-KWS model structure. It consists of
NConv = 4 GLSC blocks (right part) for better feature ex-
traction, and NCla = 2 Bottleneck-PLIF blocks (left part) for
effective classification.

3.1. Global-Local Spiking Conv1d Module

To achieve better and energy-efficient speech feature extraction,
we propose a Global-Local Spiking Conv1d module for end-to-
end feature extraction. GLSC mainly consists of three compo-
nents, Conv1d, D-Conv1d, and spiking neurons. The flowchart
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of the GLSC module is illustrated in the right portion of Fig. 2,
and it can be mathematically expressed as:

outputs = H (bn (g1 (t) ∗ f (t )) + bn (g2 (t) ∗ f (t))) (5)

where g1, g2 are the convolution kernels of Conv1d and D-
Conv1d, respectively. bn is Batch Normalization and H is the
firing function of spiking neurons as Eq.3. In the following,
we will analyze how the proposed GLSC can achieve enhanced
feature extraction and energy efficiency.

In contrast to a single Conv1d or D-Conv1d method, the
proposed GLSC module can benefit from both worlds. As
demonstrated in Fig. 1(d), the GLSC module can effectively
balance local and global features in long speech sequences. Al-
though the idea of global-local feature extraction exists in some
ANN-based models such as Branchformer [23], their success
relies on utilizing complex attention mechanisms rather than
combining global and local convolutions directly. In ANNs,
merging two convolutions directly leads to feature disappear-
ance, where salient details like the orange block become indis-
tinct upon addition as shown in Fig.3.

Figure 3: The Global-local convolution feature extraction in
ANNs and GLSC layers. Ut+1 represents the membrane po-
tential contribution of spiking neurons after decaying from Ut.

Here, we innovatively employ spiking neurons to solve this
problems and achieve simpler and sparser global-local feature
extraction. As shown in the right part of Fig.3, the output of
spiking neurons at t depends not only on the summation but
also considers the residual membrane potential from t− 1, sig-
nificantly mitigating feature disappearance caused by the sum-
mation. We will validate this aspect through ablation studies.
Moreover, only when the summation+ Ut is greater than the
Vth, can spiking neurons pass key information for outputs as the
green blocks. This approach effectively prevents the accumula-
tion of irrelevant features across layers, while ensuring that the
feature vectors become sparser. So the GLSC module achieves
a more efficient and sparser end-to-end feature extraction.

3.2. Bottleneck-PLIF Module

To address the limitations of the existing SNN-based KWS
models, we take advantage of the effective PLIF spiking
neuron and lightweight bottleneck structure to construct the
Bottleneck-PLIF module.

U t+1,n
i = U t,n

i −k (a)

 U t,n
i −

l(n−1)∑
j=1

wn
ijO

t+1,n−1
j

 (6)

Eq. 6 depicts the membrane potential dynamics of a PLIF neu-
ron. Compared to traditional LIF neurons, the PLIF neuron ex-
hibits two notable enhancements. First, learnable k (a) replaces
the constant decay hyperparameters τ in Eq.2, which can be op-
timized during training. Second, PLIF applies learnable k (a)

to the input. As depicted in Fig.4, neurons exhibit a greater di-
versity of outputs when subjected to different τ under the same
input conditions.

Meanwhile, inspired by the Bottleneck block in ResNet
[17], it can efficiently integrate feature information with fewer
parameters and reduce feature dimensionality by fusing chan-
nels. We incorporate PLIF into the Bottleneck structure to
achieve a more efficient spiking classifier as shown in the left
part of Fig. 2, and its mathematical expression is as follows:

Outputs = H [f1(H(f3(H(f1(Input)) + f1(Input)] (7)

fn represents n× n convolution and Batch Normalization, and
H represents the firing function of PLIF. In Eq.7, f1 are used
for fusing channels without compromising the input features,
which can reduce feature dimensionality without compromis-
ing the original structure.f3 are used to further computer the
previous spikes features, which can further process the signals
from the GLSC module with a more lightweight model size.

Figure 4: with the same inputs, these neurons with different τ re-
sult in varied leaky rates for neurons’ membrane potential(right
part), thereby leading to diverse output results(left part).

4. Experiments
4.1. Dataset

The Google Speech Commands (GSC) [16] dataset includes 30
short commands for Version 1 (V1) and 35 for Version 2 (V2),
recorded by 1,881 and 2,618 speakers, respectively. To make a
fair comparison, our experiments are conducted on the 12-class
classification and 35-class classification tasks as previous SNN
models [14, 24]. While 12-class classification recognizes 12
classes, that include 10 commands: “yes”, “no”, “up”, “down”,
“left”, “right”, “on”, “off”, “stop” “go”, and two additional
classes: silence, and an unknown class. The unknown class
covers the remaining 20 (25) speech commands in the set of 30
(35). The silence class accounting for about 10 % of the total
dataset is generated by splicing the noise files in the dataset. Fi-
nally, GSC-V1 is split into 56588 training, 7743 validation, and
7835 test utterances, and GSC-V2 is divided into 92843 train-
ing, 11003 validation, and 12005 test utterances. We use the
STBP[25] method to train the entire model directly.

4.2. Accuracy and Model Size

To validate the accuracy and model size of our proposed model,
we conduct a comprehensive comparative analysis with previ-
ous studies [26, 14, 13, 24, 21, 22, 27, 28]. The experimental
results are shown in Table 1. Although our accuracy is slightly
lower compared to ST-Attention-SNN and SRNN+ALIF, our
model size is significantly smaller. In conclusion, our KWS-
SNN achieves competitive performance in both 12-class and
35-class tasks with a substantially reduced model size. This in-
dicates that our model can be easier to deploy on edge devices.
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Table 1: A summary of KWS models’ accuracy and model size.

Model Model Size(K) Acc(%)

Google Speech Commands Dataset Version 1 (12)

NLIF full SNN[26] 220 87.9
E2E residual SNN[14] 86.5 92.2

(Our) SNN-KWS 70.1 93.0

Google Speech Commands Dataset Version 2 (12)

ST-Attention-SNN [21] 2170 95.1
SLAYER-RF-CNN [24] 280 91.4

SpikGRU[29] 111 94.9
(Our) SNN-KWS 70.1 94.4

Google Speech Commands Dataset Version 2 (35)

WaveSence [13] N/A 79.5
LSTMs-SNN [22] N/A 91.5
SRNN+ALIF [27] 222.1 92.5
Speech2Spikes[28] 410 89.5
(Our) SNN-KWS 80.2 92.9

4.3. Energy Efficiency

In this part, we validate the energy efficiency advantage of our
model over their ANNs counterparts. According to the stan-
dards established in the field of neuromorphic computing [30],
the energy consumption ratio between our model and an equiv-
alent ANN model can be calculated as:

Energyrate =
AC

MAC
∗ SpikingRate ∗ T imeSteps (8)

AC
MAC

is denoted as the energy consumption ratio between
float-point additions(AC) in SNNs and float-point multiplica-
tions(MAC) in ANNs. Extensive research has substantiated that
AC

MAC
= 1

7
[31]. SpikingRate and T imeSteps represent the

average firing rate and simulation time window. As illustrated in
Fig.5, the average spike firing rate of each module is 8.3% and
the T imeSteps in our model is set to 8. Therefore, according
to Eq.8, our SNN-KWS model achieves more than 10× energy
saving over the ANNs counterpart.

Figure 5: The average spike firing rate of our SNN-KWS model
when T imeSteps is 8 on the GSC-V1 dataset. The average
spike firing rate of the entire network is approximately 8.3%.

4.4. Ablation Study

In this part, we conduct ablation studies to validate the effective-
ness of the GLSC and Bottleneck-PLIF modules, respectively.
Firstly, we evaluate the GLSC by comparing it with single con-
volution methods on the same number of parameters. As illus-
trated in Figs.6(a) and 6(b), the GLSC module consistently sur-
passes other methods (black and green), exhibiting both better

performance and convergence. It is noteworthy that the GLC-
ANN(blue curve) represents the substitution of spiking neurons
in the GLSC module with continuous activation functions of
ANNs. By comparing the red and blue curves, it can be proven
that spiking neurons play a key role in addressing the issue of
feature disappearance.

(a)

(b) (c)

Figure 6: Ablation Studies. (a,b)Validating the feature extrac-
tion capabilities of the GLSC module. (c) The performance
advantage of the Bottleneck-PLIF module becomes more pro-
nounced as the number of parameters decreases.

Next, we verify that the Bottleneck module can allow us
to achieve better performance while utilizing fewer parameters.
As shown in Fig.6(c), the performance of all classifiers exhibits
a decline as parameters decrease. However, the reduction in
parameters has minimal impact on our Bottleneck-PLIF model,
and our method can achieve an accuracy of 93% even when the
parameters are below 100K.

5. Conclusion
In this work, we propose a novel SNN-KWS model with
two innovative modules. The GLSC module enhanced end-
to-end convolution speech feature extraction. It avoids the
high computation costs associated with traditional data pre-
processing [10, 11], while simultaneously considering both
global and local speech features. The Bottleleck-PLIF module
further calculates the spike features from the GLSC module,
with the aim of achieving higher classification accuracy using
fewer parameters. By conducting experiments on the GSC [16]
dataset, our model achieves competitive performance in both
accuracy and parameter efficiency among similar SNN-based
models and achieves more than 10× energy saving over the
ANNs. Therefore, our SNN-KWS model proficiently satisfies
the requirements of edge devices in terms of exceptional accu-
racy, lightweight design, and energy efficiency. In the future,
we will implement it realistically on a neuromorphic chip.
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