Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113614
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorXie, Hen_US
dc.creatorHuang, Zen_US
dc.creatorLeung, FHFen_US
dc.creatorLaw, NFen_US
dc.creatorJu, Yen_US
dc.creatorZheng, YPen_US
dc.creatorLing, SHen_US
dc.date.accessioned2025-06-16T00:36:48Z-
dc.date.available2025-06-16T00:36:48Z-
dc.identifier.isbn979-8-3503-1333-8en_US
dc.identifier.urihttp://hdl.handle.net/10397/113614-
dc.description2024 IEEE International Symposium on Biomedical Imaging (ISBI), 27-30 May 2024, Athens, Greeceen_US
dc.language.isoenen_US
dc.subjectScoliosis diagnosisen_US
dc.subjectSpine segmentationen_US
dc.subjectStructure-affinity attentionen_US
dc.subjectTransformer architectureen_US
dc.titleSATR : a structure-affinity attention-based transformer encoder for spine segmentationen_US
dc.typeConference Paperen_US
dc.identifier.spage1en_US
dc.identifier.epage5en_US
dc.identifier.doi10.1109/ISBI56570.2024.10635612en_US
dcterms.abstractIn digital histopathology, spine segmentation on ultrasound images plays a vital role, especially as a pre-processing filter to measure spine deformity and diagnose scoliosis automatically. This segmentation task remains challenging owing to the lack of consideration of high spatial correlation for different bone features. In this paper, in order to encode the rich prior knowledge regarding their structural attributes and spatial relationships, we propose a novel structure-affinity attention-based transformer encoder (SATR) to segment spine. It exploits the hierarchical architecture to output multi-scale feature representations. Meanwhile, the constraint on spine structural information enhances the feature usability of the network and consequently improves the segmentation accuracy. The comparative experiments verify that SATR achieves promising performance on spine segmentation as compared with other state-of-the-art candidates, which makes it conveniently replace the backbone networks for intelligent scoliosis assessment.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 2024, p. 1-5, https://doi.org/10.1109/ISBI56570.2024.10635612en_US
dcterms.issued2024-
dc.relation.conferenceInternational Symposium on Biomedical Imaging [ISBI]en_US
dc.description.validate202506 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3693, a3693-
dc.identifier.SubFormID50743, 50743-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextResearch Institute for Smart Ageing, The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Xie_SATR_Structure-affinity_Attention-based.pdfPre-Published version2.78 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.