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ABSTRACT
In digital histopathology, spine segmentation on ultra-

sound images plays a vital role, especially as a pre-processing
filter to measure spine deformity and diagnose scoliosis auto-
matically. This segmentation task remains challenging owing
to the lack of consideration of high spatial correlation for
different bone features. In this paper, in order to encode the
rich prior knowledge regarding their structural attributes and
spatial relationships, we propose a novel structure-affinity
attention-based transformer encoder (SATR) to segment
spine. It exploits the hierarchical architecture to output multi-
scale feature representations. Meanwhile, the constraint on
spine structural information enhances the feature usability
of the network and consequently improves the segmentation
accuracy. The comparative experiments verify that SATR
achieves promising performance on spine segmentation as
compared with other state-of-the-art candidates, which makes
it conveniently replace the backbone networks for intelligent
scoliosis assessment.

Index Terms— Spine Segmentation, Structure-Affinity
Attention, Transformer Architecture, Scoliosis Diagnosis

1. INTRODUCTION

Scoliosis is medically defined as a lateral curvature of the
spine exceeding 10 degrees. The demographic group at the
highest risk for scoliosis is that of adolescents who are on
their bone development stage [1]. Adolescent Idiopathic Sco-
liosis (AIS) accounts for approximately 85% of all scoliosis
cases [2]. In contrast, Adult Degenerative Scoliosis (ADS)
presents as another form of coronal spine deformity, affects
the elderly population without a scoliosis history [3].

Owing to the fact that bone is the tissue with the high-
est acoustic impedance, ultrasound imaging can be used to
visualize and locate the bone surface in surgical operations
[4]. For faster diagnosis and better visualization of the spine
structure, Volume Projection Imaging (VPI) was proposed to
analyse the intensity of all voxels and form coronal 2D im-
ages [5]. As a pre-analyzing step for automatic measurement

of spine deformity, spine segmentation from ultrasound VPI
images provides the basis for intelligent scoliosis diagnosis.

In recent years, with the increasing attention to artificial
intelligence (AI), Convolutional Neural Networks (CNNs),
particularly convolutional encode-decoder architectures [6],
have been applied to extract bone features from ultrasound
images in an automated manner. Currently, the UNet model
[7] has become the de-facto standard for accurate medical im-
age segmentation. This further motivated researchers to de-
velop extensions for more effective spine segmentation [8],
[9]. However, a common characteristic of the aforementioned
work is that they are heavily based on the CNN structure,
which suffers from a weak global representation learning ca-
pability.

To make up for the above deficiency, exploration has
been made on self-attention mechanism [10], which enables
a single feature from any position to perceive features of
all the other positions. Transformers [11] rely on global
self-attention mechanisms and were introduced to computer
vision tasks, called Vision Transformers (ViT), to serve as an
alternative to CNNs for image classification [12]. This first
pure transformer was applied directly to sequences of im-
age patches and obtained comparable and even better results
in some tasks than CNNs, such as semantic segmentation
[13], [14]. However, pure transformer-based methods have
not been widely applied in medical image segmentation due
to the much higher resolution of pixels in medical images
that requires dense prediction at the pixel level. Moreover,
ViT outputs single-scale low-resolution features instead of
multi-scale ones. To overcome these limitations, Xie et al.
proposed Segformer [15], a hierarchical architecture that
enables the encoder to generate both high-resolution fine fea-
tures and low-resolution coarse features. Swin Transformer
[16] constructed a hierarchical representation by starting
from small-sized patches and gradually merging neighboring
patches in deeper transformer layers.

Different bone features show high spatial correlation and
only appears in some regions in the image. However, only
limited exploration has been made to utilize the structural at-
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Fig. 1. Proposed SATR framework for spine segmentation consists of two main modules: Hierarchical SA transformer blocks
to extract high/low resolution features; and a segmentation network (feature pyramid network (FPN) + head).

tributes and spatial relationships of different bones. For spine
segmentation, the strong prior knowledge of shapes and posi-
tions of the spine bones deserves to be analysed.

In this paper, we propose a novel structure-affinity hierar-
chical transformer (SATR) framework to segment spine in ul-
trasound images more effectively. Same as Swin Transformer,
we refine the pyramidal structure to produce high/low-
resolution attention maps. The image patches are encoded
with larger fields of view compared to conventional CNNs,
and are decoded by taking local and global dependency in-
formation into account. Critically, in order to encode prior
knowledge on the structure of the spine bones into the seman-
tic representations, we utilize the characteristic of capturing
semantic-level affinity in the self-attention mechanism [17]
and design a structure-affinity attention (SAA) layer embed-
ded in the structure-affinity (SA) transformer block to enrich
the learned bone features. We apply this attention layer in
each encoder scale to model the multi-resolution feature rep-
resentation, with the same feature map resolutions as those
of typical CNNs. As a result, the proposed architecture could
replace the backbone networks for spine segmentation.

Our experimental results demonstrate that the proposed
SAA layer is found adept in the transformer encoder. The pro-
posed SATR framework can recognize the spine bones more
effectively, which significantly leads to a stable and better
spine segmentation performance quantitatively and qualita-
tively. To summarize, our major contributions are as follows:

• A novel structure-affinity self-attention mechanism to pro-
duce structure-affinity feature representations.

• Embedding SAA layer to the hierarchical architecture to
propose a novel hierarchical transformer encoder.

• Showing SATR’s effectiveness for spine segmentation
in ultrasound VPI images, surpassing other transformer-
based methods on scoliosis data.

2. METHODOLOGY

An overview of the structure-affinity hierarchical transformer
framework is presented in Fig. 1. Given a spine ultrasound
VPI image with size H ×W× 3, we first split it into patches
of size 4 × 4 by a patch embedding module. Then, it is pro-
jected to an arbitrary dimension C1, (empirically C1 = 192).
Second, four transformer blocks with designed structure-
affinity attention layer are applied on these image patches

to get multi-level features with output resolution {H
4 × W

4 ,
H
8 × W

8 , H
16 ×

W
16 , H

32 ×
W
32 }. This encoder produces a hierar-

chical representation, then they are passed into the decoder to
predict the segmentation mask.

2.1. Hierarchical Transformer Encoder

The encoder adopts stacked SA transformer blocks and patch
merging layers to produce a hierarchical representation as the
network gets deeper. By this means, our encoder generates
multi-level multi-scale features given an input image. Specif-
ically, after each SA transformer block, we perform patch
merging to merge neighbouring patches and obtain a hierar-
chical feature map f i with a resolution of H

2i+1 × W
2i+1 × Ci,

where i ∈ {1, 2, 3, 4}, and Ci+1 = 2Ci. This operation can
be easily implemented by “nn.Conv2D” in PyTorch. Prac-
tically, each layer down-samples the feature representation
while up-sampling the channel dimension by a factor of 2. Ul-
timately, these maps provide both low-resolution coarse fea-
tures and high-resolution fine features for the segmentation
head.

2.2. Structure-Affinity (SA) Transformer Block

Our SA transformer block is built based on regular window
(W-) and shifted window (SW-) multi-head self-attention
(MSA). The block is composed of two successive trans-
former sub-blocks as in [16], but a structure-affinity attention
(SAA) layer (see details in Sec. 2.3) is employed at the end
of each sub-block for the further processing of feature maps
to produce spine bone affinity. As illustrated in Fig. 2, each
sub-block contains LayerNorm (LN) and 2-layer multi-layer
perceptron (MLP). Accordingly, the SA Transformer Block
is formulated as:

f̂ i = W-MSA(LN(f i−1)) + f i−1,

f i = SAA(MLP(LN(f̂ i)) + f̂ i),

f̂ i+1 = SW-MSA(LN(f i)) + f i,

f i+1 = SAA(MLP(LN(f̂ i+1)) + f̂ i+1)

(1)

where f̂ i and f i denote the output features of the (S)W-MSA
module and the SAA layer for block i, i ∈ {1, 2, 3, 4}.
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Fig. 2. An illustration of the proposed SA Transformer Block.
W-MSA and SW-MSA are multi-head self-attention modules
with regular and shifted windows respectively. “MLP” indi-
cates multi-layer perceptron.

2.3. Structure-Affinity Self-Attention Mechanism

In spine images, three spine bones are typically identified:
rib, thoracic process, and lump. These bone features exhibit
a relatively consistent shape and position across spine im-
ages, thereby harboring valuable prior knowledge regarding
their structural attributes and spatial relationships. To capture
this rich information, we propose a structure-affinity atten-
tion layer, which is embedded into the SA transformer block.
This layer is designed to acquire and encode prior knowledge
into attention maps, subsequently yielding affinity for differ-
ent spine bones. We employ four attention maps to collect
the structural knowledge after taking the categories of bone
features and background region into account. This approach
enhances the concentration of contextual information of bone
features and effectively learns affinity from attention across
spine images.

Fig. 3 shows the details of structure-affinity attention layer
for the enhancement of spine segmentation. The input is a
feature map fs ∈ RC×H×W , where C represents the num-
ber of channels, and H and W correspond to the height and
width of the input, respectively. Firstly, we adopt a convolu-
tion layer with a kernel size of 1×1 and the reshape opera-
tion to generate the query and key representation, denoted as
q ∈ RC

′
×(HW ) and k ∈ RN×(HW ), respectively. It is worth

noting that the biggest difference between the convolution φ
and convolution θ is the reduction scale of output channel di-
mension. C is reduced to C

′
= C

4 via convolution φ in or-
der to reduce the computational complexity. Meanwhile, N
represents the number of classes for segmentation, which in-
cludes three spine bone features and the background region,
i.e., N = 4

For the key representation k, we have reduced its number
of channel to 4, matching the number of classes N through
convolution θ. That means each channel map can be regarded
as a class-specific spatial response, enabling the precise de-
scription of features related to either one foreground spine
bone or the background region. Essentially, the self-attention
mechanism functions as a directed graphical model [17],
where the affinity matrix aligns with the attention map, as
points sharing the same structural knowledge are assumed to
obtain the equal affinity. Consequently, we produce a novel
structure-affinity key representation k̂ ∈ R(HW )×N serving
as the value representation for pixel-pair in the conventional
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Fig. 3. Proposed structure-affinity attention layer. The feature
maps are shown as the shape of their tensors. Proper reshap-
ing or permuting is performed on specific rows. “⊗” denotes
matrix multiplication.

self-attention computational process. A matrix multiplication
between k̂ and q is applied, followed by a softmax layer for
proper normalization, to generate the attentive affinity matrix
s ∈ RC

′
×N . Next, another matrix multiplication between s

and the reshaped k̂ leads to the re-estimated structure-affinity
features f

′
= δ(s× k̂) ∈ RC×H×W .

This method allows comprehensive acquisition of struc-
tural knowledge across spine bones, facilitated by a affinity
matrix because the features are directly synthesized with the
structure-affinity key representation k̂. Ultimately, we con-
catenate the feature map with the original input, followed
by a convolutional mapping ρ to obtain the final output f .
This propagation process optimally exploits the high-affinity
regions of the spine bones while mitigating the influence of
wrongly activated areas in ultrasound VPI images.

3. EXPERIMENTS

3.1. Dataset

The dataset is composed of 109 ultrasound VPI images, which
are collected from 109 subjects (82 females and 27 males)
with varying degrees of spine deformity using the Scolioscan
system (Model SCN801, Telefield Medical Imaging Ltd,
Hong Kong). Each VPI image is acquired by projecting
3D ultrasound scanning of the whole spine region into a 2D
coronal plane. Accurate ground-truth segments are manually
labelled by ultrasound experts. The dataset is split into two
sets: a training set with 80 samples, and a testing set with
29 samples. To ensure uniformity, all images are resized
to dimensions of 2048×512. During the training stage, we
further crop the image size to 512×512 pixels as the input
of the transformer encoder for effective feature learning. In
the testing stage, the resized samples are passed into the
segmentation model to generate the segmentation mask.
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Fig. 4. Visual comparisons of the spine bone segmentation re-
sults based on different methods. The segmented rib, thoracic
process, and lump are annotated in red, green and blue. The
area around the boundary of the thoracic and lumbar region
is highlighted in the yellow box, and the orange circle marks
the fine structure of rib.

3.2. Implementation Details

We establish our proposed framework based on PyTorch and
MMSegmentation. The segmentation head is built based on
the same settings in [18]. In the hierarchical transformer en-
coder, the number of heads in the SA transformer block in-
creases by {6, 12, 24, 48} as the network go deeper. The num-
ber of channels C in the SAA layer is represented by Ci,
i ∈ {1, 2, 3, 4}. During training, we build a mini-batch with
4 training samples. The model is trained on a single NVIDIA
RTX4090 GPU for 1.6 × 105 iterations by the AdamW opti-
mizer. The learning rate is initialized to 6× 10−5 and gradu-
ally reduced to the minimum leaning rate 0, based on a poly
schedule. The weight decay is set to 10−2 for regularization.

3.3. Quantitative and Qualitative Results

We evaluate the performance of our proposed SATR frame-
work against UNet [7], the recently proposed convolution-
based network of SEAM [9] for ultrasound VPI images,
and the state-of-the-art transformer architectures. Table 1
presents the comparative results on scoliosis dataset. Ac-
cording to the results, SATR outperforms both CNN and
Transformer-based approaches on nearly all the evaluation
metrics. We can even observe a significant improvement of
over 2% on the pixel accuracy in the rib and thoracic regions.
However, it is worth noting that the evaluation metric of IoU
at the area of thoracic process is not satisfactory as compared
with one SOTA Transformer-based framework, Swin [16].
We consider that the strong noise in this region confuses the
structure-affinity attention layer to discriminate the specific
bone features. Broadly, the CNN-based works exceed pure
transformer-based methods owing to the limitation of single-
scale low-resolution features. However, the introduction of
hierarchical architecture enhances the representative ability of
attention-based modules. As SATR achieves the best scores,
it can be a more preferable approach thanks to its hierarchical
architecture and structure-affinity self-attention mechanism.

Furthermore, we provide a qualitative visualization of the
spine bone segmentation results in Fig. 4. It can be observed
that our proposed SATR provides more accurate and smoother

Table 1. Performance Comparison of Different Methods
on Spine Segmentation Task, where Dice:Dice Score(%),
IoU:Intersection over Union(%) and Acc:Pixel Accuracy(%)

Modules
Rib Thoracic Lump Ave.

Dice IoU Acc Dice IoU Acc Dice IoU Acc Dice IoU Acc

UNet [7] 78.38 65.92 80.28 77.45 63.39 77.30 85.85 75.52 88.24 80.86 68.28 81.94

SEAM [9] 77.79 65.83 79.72 76.36 64.24 72.34 84.40 76.52 87.91 79.52 69.68 79.99

ViT [12] 77.86 63.74 73.27 75.86 60.79 72.33 79.20 65.56 75.75 82.08 70.44 79.54

SETR [13] 80.34 67.14 80.29 78.46 64.56 77.49 86.48 76.18 86.99 85.44 75.27 85.32

SegFormer [15] 79.13 65.47 78.03 77.81 63.67 78.82 81.56 68.87 78.28 83.67 72.66 82.93

Swin [16] 80.47 67.43 80.56 78.89 65.41 77.99 86.53 76.31 88.20 85.57 75.59 85.91

SATR (add) 80.74 67.70 80.89 78.98 65.26 78.19 86.89 76.82 88.35 85.80 75.80 85.98

SATR (Ours) 80.92 67.95 82.20 79.14 65.31 80.15 87.03 77.04 89.54 85.81 75.81 86.59

shape of each spine bone at the area around the boundary of
the thoracic and lumbar region, which is more similar to the
ground-truth segment. Specifically, as compared with Swin
[16], the application of SAA layer distinguishes the fine struc-
ture of the rib bone features. At the root of the ribs, Swin
obfuscates the edge line of each rib, while SATR enables the
clear and accurate appearance of segmented bone area in the
boundary of the image, although the occupied area is small.

3.4. Ablation Study

At the end of structure-affinity attention layer, a “concate-
nate” operation is adopted between the structure-affinity fea-
ture f

′
and the original input fs, followed by a convolution

layer. In the ablation study, we employ the “add” operation
instead of the above ones to explore the influence of differ-
ent feature fusion methods on the model performance. The
final output representation f is directly obtained without the
convolution, denoted as “SATR (add)”. The results observed
from Table 1 show that although the refined SATR frame-
work surpasses Swin Transformer by a certain margin, the
whole performance still lags behind owing to the fact that the
rich global context of each channel is captured via the “con-
catenate” operation, enhancing the representation capability
of some important channel maps.

4. CONCLUSION

This paper presents a structure-affinity attention-based trans-
former, SATR, which produces a hierarchical bone feature
representation for effective spine segmentation. Specifi-
cally, in order to make full use of the structural information
of spine bone, we propose the structure-affinity attention
layer, embedding it into the hierarchical transformer encoder.
The quantitative and qualitative results show that our model
SATR achieves more accurate segmentation results on the
spine ultrasound images, significantly surpassing previous
transformer-based methods. We hope that our framework
can serve as a solid baseline to segment spine for automatic
scoliosis diagnosis and motivate further research in the future.



5. COMPLIANCE WITH ETHICAL STANDARDS

This study was performed in line with the principles of the
Declaration of Helsinki. Approval was granted by the Ethics
Committee of The Hong Kong Polytechnic University (06
Sep 2018/HSEARS20180906005).

6. ACKNOWLEDGMENT

This work was supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region,
China, under Project B-Q86J.

7. REFERENCES

[1] Halima Shakil, Zaheen A Iqbal, and Ahmad H Al-
Ghadir, “Scoliosis: review of types of curves, etiologi-
cal theories and conservative treatment,” Journal of back
and musculoskeletal rehabilitation, vol. 27, no. 2, pp.
111–115, 2014.

[2] John P Horne, Robert Flannery, and Saif Usman, “Ado-
lescent idiopathic scoliosis: diagnosis and manage-
ment,” American family physician, vol. 89, no. 3, pp.
193–198, 2014.

[3] Zhibo Song, Zhaoquan Zhang, et al., “Mid-and long-
term comparison analysis of two approaches for the
treatment of level iii or higher lenke–silva adult de-
generative scoliosis: Radical or limited surgery?,” Or-
thopaedic Surgery, vol. 14, no. 9, pp. 2006–2015, 2022.

[4] Ilker Hacihaliloglu, “Ultrasound imaging and segmen-
tation of bone surfaces: A review,” Technology, vol. 5,
no. 02, pp. 74–80, 2017.

[5] Chung-Wai James Cheung, Guang-Quan Zhou, Siu-Yin
Law, et al., “Ultrasound volume projection imaging for
assessment of scoliosis,” IEEE transactions on medical
imaging, vol. 34, no. 8, pp. 1760–1768, 2015.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
“Fully convolutional networks for semantic segmenta-
tion,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 3431–
3440.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical im-
age segmentation,” in Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp.
234–241.

[8] Zixun Huang, Li-Wen Wang, et al., “Bone feature seg-
mentation in ultrasound spine image with robustness to
speckle and regular occlusion noise,” in 2020 IEEE In-
ternational Conference on Systems, Man, and Cybernet-
ics (SMC). IEEE, 2020, pp. 1566–1571.

[9] Rui Zhao, Zixun Huang, Tianshan Liu, et al.,
“Structure-enhanced attentive learning for spine seg-
mentation from ultrasound volume projection images,”
in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 1195–1199.

[10] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He, “Non-local neural networks,” in Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, 2018, pp. 7794–7803.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al.,
“Attention is all you need,” Advances in neural infor-
mation processing systems, vol. 30, 2017.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, et al., “An image is worth 16x16
words: Transformers for image recognition at scale,”
arXiv preprint arXiv:2010.11929, 2020.

[13] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, et al.,
“Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers,” in Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, 2021, pp. 6881–6890.

[14] Li Zhang, Jiachen Lu, Sixiao Zheng, et al., “Vision
transformers: From semantic segmentation to dense pre-
diction,” arXiv preprint arXiv:2012.15840v3, 2021.

[15] Enze Xie, Wenhai Wang, Zhiding Yu, et al., “Segformer:
Simple and efficient design for semantic segmentation
with transformers,” Advances in Neural Information
Processing Systems, vol. 34, pp. 12077–12090, 2021.

[16] Ze Liu, Yutong Lin, Yue Cao, et al., “Swin transformer:
Hierarchical vision transformer using shifted windows,”
in Proceedings of the IEEE/CVF international confer-
ence on computer vision, 2021, pp. 10012–10022.

[17] Lixiang Ru, Yibing Zhan, Baosheng Yu, et al.,
“Learning affinity from attention: End-to-end weakly-
supervised semantic segmentation with transformers,”
in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 16846–
16855.

[18] Tete Xiao, Yingcheng Liu, Bolei Zhou, et al., “Uni-
fied perceptual parsing for scene understanding,” in Pro-
ceedings of the European conference on computer vision
(ECCV), 2018, pp. 418–434.




