Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113383
Title: Predicting vessel service time : a data-driven approach
Authors: Yan, R 
Chu, Z 
Wu, L 
Wang, S 
Issue Date: Oct-2024
Source: Advanced engineering informatics, Oct. 2024, v. 62, 102718
Abstract: Vessel Service Time (VST) refers to the period from when a ship arrives at a berth until it departs. VST is a critical metric for port operational efficiency and service quality. Uncertainty in VST can undermine the operational efficiency in port management and lead to financial setbacks. To mitigate this uncertainty and lay the foundation for subsequent berth allocation, vessels typically provide an estimated departure time (EDT). However, substantial discrepancies often exist between the reported EDT and the actual departure time (ADT). These discrepancies mainly stem from unforeseen port handling inefficiencies and supply chain disruptions. This variability results in significant differences between the actual VST and its anticipated duration, thereby complicating port operations. To tackle this issue, our research represents the first study to predict VST from a data-driven perspective. We introduce an advanced tree-based stacking regression model for VST prediction, utilizing vessel port call records from 2020 to 2023. Our machine learning stacking approach achieves more accurate VST predictions than EDT reported by vessels, significantly reducing the mean absolute error (MAE) by 29.7% (from 4.54 to 3.19 h) and the root mean square error (RMSE) by 31.9% (from 6.58 to 4.48 h). The model also demonstrates reliable predictive power with an R-squared (R2) value of 0.8. These results underscore the significant scientific value of data-driven approaches in maritime studies. Our findings highlight the potential of the proposed tree-based models to surpass traditional models and originally reported data in predictive accuracy for VST. This advancement not only represents a notable improvement in predictive capabilities for VST but also lays the groundwork for further research into enhancing vessel scheduling efficiency through machine learning.
Keywords: Data-driven approach
Machine learning in port operations
Maritime transport
Port management and optimization
Vessel service time prediction
Publisher: Elsevier Ltd
Journal: Advanced engineering informatics 
ISSN: 1474-0346
EISSN: 1873-5320
DOI: 10.1016/j.aei.2024.102718
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.