Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113223
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Civil and Environmental Engineering | - |
dc.creator | Zheng, F | - |
dc.creator | Yin, H | - |
dc.creator | Ma, Y | - |
dc.creator | Duan, HF | - |
dc.creator | Gupta, H | - |
dc.creator | Savic, D | - |
dc.creator | Kapelan, Z | - |
dc.date.accessioned | 2025-05-29T07:59:27Z | - |
dc.date.available | 2025-05-29T07:59:27Z | - |
dc.identifier.issn | 0043-1397 | - |
dc.identifier.uri | http://hdl.handle.net/10397/113223 | - |
dc.language.iso | en | en_US |
dc.publisher | Wiley-Blackwell Publishing, Inc. | en_US |
dc.rights | © 2023. American Geophysical Union. All Rights Reserved. | en_US |
dc.title | Toward improved real-time rainfall intensity estimation using video surveillance cameras | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 59 | - |
dc.identifier.issue | 8 | - |
dc.identifier.doi | 10.1029/2023WR034831 | - |
dcterms.abstract | Under global climate change, urban flooding occurs frequently, leading to huge economic losses and human casualties. Extreme rainfall is one of the direct and key causes of urban flooding, and accurate rainfall estimates at high spatiotemporal resolution are of great significance for real-time urban flood forecasting. Using existing rainfall intensity measurement technologies, including ground rainfall gauges, ground-based radar, and satellite remote sensing, it is challenging to obtain estimates of the desired quality and resolution. However, an approach based on processing distributed surveillance camera network imagery through machine learning algorithms to estimate rainfall intensities shows considerable promise. Here, we present a novel approach that first extracts raindrop information from the surveillance camera images (rather than using the raw imagery directly), followed by the use of convolutional neural networks to estimate rainfall intensity from the resulting raindrop information. Evaluation of the approach on 12 rainfall events under both daytime and nighttime conditions shows that generalization ability, and especially nighttime predictive performance, is significantly improved. This represents an important step toward achieving real-time, high spatiotemporal resolution, measurement of urban rainfall at relatively low cost. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Water resources research, Aug. 2023, v. 59, no. 8, e2023WR034831 | - |
dcterms.isPartOf | Water resources research | - |
dcterms.issued | 2023-08 | - |
dc.identifier.scopus | 2-s2.0-85168556884 | - |
dc.identifier.eissn | 1944-7973 | - |
dc.identifier.artn | e2023WR034831 | - |
dc.description.validate | 202505 bcch | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Others | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | The NSFC-RGC Joint Research Scheme (JRS) under project (52261160379, N_PolyU599/22) | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Zheng_Toward_Improved_Real‐Time.pdf | 1.2 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.