
1. Introduction
The human costs of flooding are huge, resulting in about 220,000 deaths worldwide and cumulative direct 
economic losses estimated at about US$1 trillion, for the period 1980 to 2014 (Winsemius et al., 2016). Focus-
ing just on urban flooding, during 2004–2014 the United States alone experienced direct economic losses of 
about US$9 billion per year (National Academies of Sciences and Medicine, 2019). Similarly, the Ministry of 
Water Resources (China.com, 2019) reported an average annual economic loss of RMB 229.87 billion (during 
2013–2018) due to floods across China with, on average, 153 cities suffering from urban flooding each year.

Urban flooding is a consequence of both natural and social factors (Zheng et al., 2016), including extreme rain-
fall, urban topography and terrain, insufficient flow capacity of existing urban drainage systems (Vojinovic 
et  al.,  2014), increase in extent of impermeable surfaces (Lin et  al.,  2019), and river floods (O'Donnell & 
Thorne, 2020). Of these, the dominant factor is rainfall, and especially high-intensity rainstorms of short-duration, 
which are becoming increasingly more frequent due to global climate change (Field et al., 2012). Uncertainty 
about the spatial and temporal distribution of rainfall can severely challenge our ability to predict the severity and 
extent of urban flooding (Berne & Krajewski, 2013). Therefore, access to accurate real-time estimates of rain-
fall, with high spatial and temporal resolution, is particularly important for short lead-time forecasting of urban 
hydrological processes, as well as for real-time monitoring and warning to mitigate the effects of urban flooding.

At present, the main strategies commonly used to monitor urban rainfall are rainfall gauges, ground-based 
radar and satellite-based remote sensing. While interpolation between rainfall gauges can provide estimates of 
the spatial distribution of urban rainfall, the availability of rain gauges in urban areas is usually insufficient. 
Ground-based radar can provide local rainfall estimates with fairly high spatiotemporal resolution (about 
1 × 1 km) (Zhou et al., 2019), but accuracy can be compromised by numerous factors including uneven vertical 
distributions of rainfall intensity, abnormal propagation of electromagnetic waves, ground clutter, blockage due 
to high-rise buildings, and variations in the surface wind field (Qin et al., 2014). Satellite-based remote sensing 
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can provide much larger spatial coverage (Long et al., 2015; Yong et al., 2012) but often at lower spatiotemporal 
resolution (about 20 × 20 km) (Zorzetto & Marani, 2019). Therefore, using such methods, it is difficult to obtain 
real-time rainfall estimates with a sufficiently fine spatial resolution, ideally on the order about 10 × 10 m (Gires 
et al., 2012).

In recent years, some novel approaches to estimating rainfall have been proposed. One promising approach is to 
exploit the potential power of crowdsourcing (Zheng et al., 2018) and the Internet of Things (IoT), which enables 
decentralization of the data collection mission by use of distributed sensor technologies For example, the sensors 
used for rainfall monitoring can include smart wipers (Rabiei et al., 2013), intelligent umbrellas (Hut et al., 2014), 
optical rainfall intensity sensors, and microwave receivers (Uijlenhoet et al., 2018). However, this approach relies 
upon the availability of large numbers of sensors, and can therefore be costly and complicated to implement.

Alternatively, with the rapid pace of urbanization, the density of networks of surveillance cameras also increases, 
providing a potentially more viable economic solution to the distributed sensor problem since such networks are 
already in place (Jiang et al., 2019; Yin et al., 2023). The idea is, that rainfall images captured by surveillance 
cameras can be processed through machine learning algorithms in order to estimate rainfall intensities. For exam-
ple, Yin et al. (2023) trained a Convolutional Neural Network (CNN), named the irCNN, to estimate rainfall from 
daytime rainfall imagery. However, reported limitations of that approach include: (a) the need for large amounts 
of training data, and (b) poor generalization ability to different conditions (and especially nighttime).

A possible solution to the above-mentioned problems is to first extract raindrop information from the rainfall 
images, and then use this more detailed information as input into a CNN that estimates the rainfall intensity. 
This task is (of course) not simple and algorithms that have been designed to extract raindrops information from 
images suffer from various kinds of limitations. Much of the relevant research is based on the premise that rain-
drops in images are noise that affects the image quality and must therefore be removed (Wang et al., 2019). Algo-
rithms have been developed to remove rain from videos (Garg & Nayar, 2007) and still images (Xu et al., 2012) 
based on recognizing their characteristic properties (e.g., color, texture, etc.) (Zhang et al., 2006), and on detect-
ing the changes induced between adjacent video frames (Garg & Nayar, 2007). But when doing so, other random 
movements such as oscillations of branches and leaves, and changes in brightness, also tend to get removed. 
Garg and Nayar (2007) proposed a method for extracting raindrops from videos by assuming that the background 
remains still between consecutive video frames and identifying the changes in gray scales of three consecutive 
images. However, due to the oversimplified nature of their algorithm, other kinds of noise were extracted as well. 
More recently, Jiang et al. (2019) attempted to extract rainfall drop information from surveillance camera images 
by means of a convex optimization algorithm that exploits the statistical differences between real and synthetic 
rainfall images. A challenge associated with their approach is that real raindrops are considerably more complex 
and variable than the synthetic ones used; the method fails under the high-wind speed conditions that can accom-
pany high-intensity rainfall events.

In this work, we propose and test a new two-stage algorithm that estimates rainfall intensity from rainfall images. 
In the first stage, instead of directly processing the rainfall images through a CNN, the image is first divided into 
three layers, namely background, rainfall and noise, from which the raindrop image information is extracted based 
on the different characteristics of each layer. In the second stage, an irCNN model is trained to estimate rainfall 
intensity using the extracted raindrop image information as input data. We show that the proposed two-stage algo-
rithm enhances the generalization ability of the model, and especially its predictive performance under nighttime 
conditions.

2. Methodology
2.1. Model Architecture

Our proposed two-stage algorithm for predicting rainfall intensity from video imagery is shown in Figure 1. As 
illustrated, each video frame is divided into a background layer, rainfall layer, and a noise layer. The background 
layer represents the main body of the image, which is assumed to remain unchanged in consecutive frames of the 
video. The rainfall layer represents the raindrops, which are characterized by frame-to-frame changes and spatial 
sparsity. The noise layer is characterized by randomness, and occupies a relatively small proportion of the signal 
compared to the other two layers. Based on the characteristic features of each layer, a function for extracting 
raindrop information is designed. The irCNN model architecture is then used to perform the rainfall intensity 
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calculation, using the extracted raindrop information as inputs. Two evaluation methods are utilized to assess the 
effectiveness of the proposed approach under different conditions. In the following sections, the raindrop infor-
mation extraction algorithm and the method for estimating rainfall intensity are described.

2.2. Raindrop Extraction Algorithm

Conventional algorithms for removing raindrops from imagery often do so along with removal of other kinds of 
“random” noise (e.g., changes in background, etc.). In this study we develop a new raindrop extraction algorithm 
for obtaining accurate images of raindrops, with the key novelty being the partitioning of the image into three 
layers, consisting of background, rainfall, and noise, which facilitates raindrop extraction based on different char-
acteristic features in each of the layers.

Consider the source grayscale image to be a two-dimensional matrix X ∈ R h×w (h, w = height and width of image), 
which can be expressed in terms of the decomposition:

𝑿𝑿 = 𝑩𝑩 +𝑹𝑹 +𝑵𝑵 (1)

where B ∈ R h×w, R ∈ R h×w, and N ∈ R h×w represent the background layer, rainfall layer and noise layer, respec-
tively, as shown in Figure 1. Assuming that, except for changes in brightness and due to moving objects, the back-
ground changes are negligible between consecutive frames, a low-rank matrix decomposition (Li et al., 2018) can 
be used to approximate the rainfall image as follows. Based on the singular value decomposition theorem (SVD 
theorem), any arbitrary real matrix A ∈ R m×n can be decomposed as:

𝐀𝐀 = 𝐂𝐂𝐂𝐂𝐂𝐂𝐓𝐓 (2)

where C ∈ R m×m, Γ∈R m×n, D ∈ R n×n, such that Γ is a diagonal matrix whose diagonal elements Γii (0 ≤ i ≤ min(m,n)) 
are the singular values of the matrix A, the column vectors of C are the left singular vectors, and the column 

Figure 1. Two-stage algorithm for rainfall intensity estimation.
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vectors of D are the right singular vectors. By means of a low-rank matrix decomposition, the matrix A can be 
approximated by choosing k < rank(A), such that,

𝑨𝑨
∗

≈ 𝑨𝑨 = 𝑬𝑬𝚲𝚲𝑭𝑭
𝑻𝑻 (3)

where E ∈ R m×k, Λ∈R k×k, and F ∈ R n×k, such that E and F consist of the first k columns of singular vectors in C 
and D, respectively, and Λ is the diagonal matrix obtained after preserving the first k singular values.

Now, each image from the video X (X ∈ R h×w) can be transformed into a one-dimensional vector x (x ∈ R hw) by 
means of an Unfold operation, by taking the first column of X, followed by the second column, and then, the third 
column, etc. Next, the transformed one-dimensional vectors for each successive image can be arranged in time 
order to form a new two-dimensional matrix X′ ∈ R hw×t. Using the low-rank matrix decomposition described 
above, and choosing r < rank(X′), we can obtain:

𝑿𝑿
′∗

≈ 𝑿𝑿
′

= 𝑼𝑼𝚺𝚺𝑽𝑽 (4)

where U ∈ R hw×r, Σ ∈ R r×r, and V ∈ R n×r. The background is the main part of the rainfall image, which can be 
estimated using the singular value decomposition theorem (SVD) as did in Li et al. (2018). More specifically, a 
Fold operation (the inverse operation of the Unfold operation) is used to convert the 2D matrix X′* to a 3D matrix 
B, which is expressed as:

𝑩𝑩 ≈ Fold

(

𝑿𝑿
′∗
)

≈ Fold(𝑼𝑼𝚺𝚺𝑽𝑽 ) (5)

where B ∈ R h×w×t. To ensure that the estimate B is a good approximation to (close to) Fold(UΣV), we can mini-
mize the Frobenius norm of the difference expressed as:

min‖� − Fold(��� )‖� (6)

The next step is to characterize the rainfall layer R. To estimate R, we take advantage of the fact that the sparsity of 
raindrops is the major feature that distinguishes them from other objects in an image. We assume that we can repre-
sent the rainfall layer as R ≈ HR∘X, where ∘ represents the Hadamard product (also known as the element-wise 
product, namely, the product of two matrixes element by element). Now, we can use Markov random fields (Wei 
et al., 2017) to represent the positions of raindrops, by creating a matrix HRijk ∈ R h×w×t whose elements consist of:

𝐇𝐇𝐇𝐇𝑖𝑖𝑖𝑖𝑖𝑖 =

⎧

⎪

⎨

⎪

⎩

1, if the position is a raindrop

0, if the position is not a raindrop
 (7)

where to ensure sparsity of the matrix, we can minimize the L1 norm (e.g., ‖A‖1 = ΣiΣj|aij|) expressed as (Li & 
Zhu, 2008):

min‖��‖1 (8)

Finally, we need to characterize the noise layer N, which represents random perturbations in the image due to 
wind and changes in brightness etc. From Equation 1 we can write:

𝑵𝑵 = 𝑿𝑿 − 𝑩𝑩 −𝑹𝑹 = 𝑿𝑿 − 𝑩𝑩 −𝐇𝐇𝐇𝐇◦𝑿𝑿 = (1 −𝐇𝐇𝐇𝐇)◦𝑿𝑿 − 𝑩𝑩 (9)

To control the degree of the noise to be small enough for successful image decomposition, we can minimize the 
Frobenius norm of N, expressed as:

min‖(1 −��)◦� − �‖� (10)

Finally, we combine Equations 6, 8 and 10 to express the desired properties of all three layers B, R, and N, by 
defining the objective function:

min(𝜆𝜆1‖𝑩𝑩 − Fold(𝑼𝑼𝚺𝚺𝑽𝑽 )‖𝐹𝐹 + 𝜆𝜆2‖𝐇𝐇𝐇𝐇‖1 + 𝜆𝜆3‖(1 −𝐇𝐇𝐇𝐇)◦𝑿𝑿 − 𝑩𝑩‖𝐹𝐹 ) (11)

where, λ1, λ2, and λ3 represent weighting parameters that must be specified. Of course, the specific values chosen 
for λ1, λ2, and λ3 will affect the raindrop extraction results.
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We note that small variations of the weighting parameter values may produce systematic errors in estimating 
raindrops. However, these errors can be accounted for in the second stage of the entire method (see Section 2.3), 
wherein a deep learning algorithm is implemented. This is because the strong fitting ability of the deep learn-
ing algorithm enables it to learn and compensate for such systematic patterns in the errors, making the entire 
approach robust to small variations in the parameters. In this study, we fixed the values of λ1, λ2, and λ3 at 1, 0.1, 
and 1, respectively.

Our task now is to find the values of r and HR that give rise to the matrices B = Fold(X′*), R ≈ HR∘X and 
N = (1−HR) ∘X−B that minimize the objective function defined by Equation 11. Since the matrix to be opti-
mized consists of hundreds of thousands of elements, it is necessary to use a sparse optimization algorithm, to 
transform the nonconvex function into a convex function and then solve it by stepwise iteration. Here, we use 
the Alternating Direction Method of Multipliers (Boyd et al., 2011). Noting that the SVD method is able to 
identify raindrops from the background noise, which can include the moving cars/people or trees; this has been 
further verified in this study, with details given in Section 4.1. Further, the folding and unfolding operations 
are widely used in computer science for image processing (Li et al., 2018) and hence these are adopted in this 
study.

2.3. Rain Intensity Estimation

After extracting raindrop information from the rainfall images, we use it as input data when training the irCNN 
machine learning model (Yin et al., 2023) to estimate rainfall intensity. This works, because rainfall intensity is 
strongly related to the density and size of raindrops in the image, expressed mathematically as:

𝐼𝐼 = 𝑓𝑓 (𝑍𝑍(𝑑𝑑𝑑 𝑑𝑑)) (12)

where, I = rainfall intensity (mm/h), Z = rainfall image, d = the number of raindrops, s = raindrop size, and 
f = underlying nonlinear relationship between rainfall image and rainfall intensity. Noting that Equation 12 used 
for the deep learning algorithm may be different to the integration equation as the deep learning method exploits 
information about the number and the size of the raindrops for model training (Yin et al., 2023).

The irCNN model is based on the ResNet34 model that has been widely used in computer science and engineer-
ing (He et al., 2016). The irCNN model structure is different from that of the original CNN, in that a regression 
layer is included for rainfall intensity estimation:

𝐼𝐼 = 𝑾𝑾
T
𝑿𝑿 + 𝑏𝑏 (13)

where 𝐴𝐴 𝐼𝐼   = estimated rainfall intensity, W = parameter matrix (512 × 1) of 
the linear regression layer, X = output of the previous layer, T = transpose 
operation, and b = bias term.

Due to the large number of irCNN model parameters that must be trained, a 
correspondingly large number of rainfall images will be needed if training 
the model completely from scratch. To circumvent this problem, we start 
with an existing irCNN model (Deng et al., 2009) that was (pre)trained using 
an open-source ImageNet data set containing 1.28 million images of 1,000 
object categories that are not necessarily related to rainfall. The pre-trained 
model was then fine-tuned using the rainfall information extracted in stage 
one (describe above) to determine the final irCNN model parameter values. 
This pre-training approach is commonly used for CNN models since images 
about different objects share many common features that are relevant to their 
detection and classification.

3. Data Description and Performance Metrics
For this study, we analyzed 12 rainfall events captured between June and 
July 2020. Six of these events (Event 1–6) occurred during the daytime and 
six at night (Event 7–12) as listed in Table 1. Imagery for these events was 

Rainfall 
events Date

Duration 
(min)

Average rainfall 
intensity (mm/h)

Maximum rainfall 
intensity (mm/h)

1 21/06/2020 17 16.9 42.0

2 21/06/2020 69 19.0 66.0

3 26/06/2020 21 22.3 60.0

4 10/07/2020 12 11.0 36.0

5 16/07/2020 18 13.7 42.0

6 26/07/2020 33 23.6 60.0

7 29/06/2020 21 27.4 96.0

8 29/06/2020 18 9.7 24.0

9 30/06/2020 39 22.2 60.0

10 02/07/2020 55 39.3 156.0

11 03/07/2020 29 11.2 30.0

12 05/07/2020 25 10.1 24.0

Table 1 
Details of the 12 Rainfall Events, Where Events 1–6 Occurred in Daytime 
and Events 7–12 Occurred in the Nighttime
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captured using a fixed camera with a shutter speed of 1frame per second (fps). Rainfall intensity was recorded 
with a time resolution of 1 min and an intensity resolution of 0.1 mm/min (6 mm/hr), using a tipping-bucket rain 
gauge installed near the camera (within1–2 m). Although the sampling error of tipping bucket gauges across 
different temporal scales (especially at the one-minute scale) can be large (Ciach, 2003), this does not affect the 
applicability of the proposed method, since accurate rainfall records can be easily incorporated for actual model 
implementation.

3.1. Determination of Instantaneous Rainfall Intensity

The exposure time of a single video frame taken once per second by the camera, was about 1/200 s. However, the 
data recorded by the rain gauge was cumulative rainfall volume over a period of 1 min. To address this mismatch, 
we assumed a linear variation of rainfall intensity within each one-minute interval. Since the change in rain-
fall intensity during any one-minute period is typically relatively small, this assumption seems reasonable, and 
enables us to use linear interpolation to estimate the instantaneous rainfall intensity from the rain gauge records. 
By further assuming that the value at the midpoint of each recording time interval of the rain gauge is exactly the 
rainfall intensity for that time period, we can compute the instantaneous rainfall intensity It at any time t during 
that time interval as:

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝐿𝐿 +
𝑡𝑡 − 𝑡𝑡𝐿𝐿

𝑇𝑇
(𝐼𝐼𝑅𝑅 − 𝐼𝐼𝐿𝐿) (14)

where T is the recording interval of the rain gauge (T = 1 min in this study), and IL and IR are the rainfall intensi-
ties at the moments tL and tR, respectively.

3.2. Model Performance Metrics

We computed several metrics that are commonly used to measure model predictive performance (here the 
estimated rainfall intensity). These include the standard statistical indices of mean absolute error (MAE), mean 
absolute percentage error (MAPE), and coefficient of determination (R 2), and two metrics that are widely 
applied in hydrology—the Nash-Sutcliffe model efficiency (NSE) and the Kling-Gupta efficiency (KGE). 
These metrics are selected as they represent different aspects of the model performance, where MAE and 
MAPE respectively shows the model's errors (absolute and percentage) relative to observations, R 2 focuses on 
the overall correlation between simulations and observations, NSE indicates the model's ability in fitting the 
observations and KGE simultaneously considers the bias, variance and correlation. The expressions for MAE 
and MAPE are:

MAE =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

|𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖| (15)

MAPE =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

|

𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖

𝑌𝑌𝑖𝑖

| (16)

where n is the total number of data points, Yi is the ith observation, and 𝐴𝐴 𝑌𝑌𝑖𝑖 is the ith prediction. Lower values of 
MAE and MAPE indicate better model performance. The NSE, and KGE measures of goodness of fit are:

NSE = 1 −

𝑛𝑛
∑

𝑖𝑖=1

(

𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑙𝑙

)2

𝑛𝑛
∑

𝑖𝑖=1

(

𝑌𝑌𝑖𝑖 − 𝑌𝑌

)

2

 (17)

KGE = 1 −

√

(𝑟𝑟 − 1)
2

+

(

𝜎𝜎pred

𝜎𝜎obs

− 1

)

2

+

(

𝜇𝜇pred

𝜇𝜇obs

− 1

)

2

 (18)

where 𝐴𝐴 𝑌𝑌  is the average value of the observations, r represents the linear correlation between the observations and 
predictions, σpred and μpred are the standard error and average value of the predictions, σobs and μobs are the standard 
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error and average value of the observations. Larger values of R 2, NSE, and 
KGE indicate a better fit of the model. The model fits all data perfectly when 
R 2, NSE, or KGE equals 1.

4. Results and Discussion
4.1. Raindrop Extraction

Sample images of raindrop information extracted by the proposed algo-
rithm under two different conditions (daytime and nighttime) are shown 
in Figure 2. These represent an illustration of typical results obtained, and 
further quantitative analysis of the method's performance is presented below. 
An original daytime rainfall image, taken from Jiang et al. (2019), is shown 
in Figure 2a and the corresponding extracted raindrop image in Figure 2b. A 
nighttime rainfall image, and the corresponding extracted raindrop image are 
shown in Figures 2c and 2d, respectively. The figure demonstrates that the 
raindrop extraction algorithm works well under both daytime and nighttime 
conditions.

Computational efficiency of the raindrop extraction algorithm was 
improved by using a GPU. The specific hardware configuration used was 
a PC with Intel Core i9-9820X @ 3.3 GHz processor, 32 GB RAM, and 
the GPU was NVIDIA RTX 2080Ti 11  GB GPU. Computational time 
to process 100 rainfall video frames at 1,920  ×  1,080 pixels resolution 
was about 24  s. In comparison, the computational time of the algorithm 
proposed by Jiang et  al.  (2019) to process 100 frames of rainfall images 
at much lower 320 × 480 pixels resolution was about 26.4 s. Overall, the 
speed of the proposed raindrop extraction algorithm was ∼18 times faster 
than that reported by Jiang et al. (2019) to process the same rainfall video. 
The reason for this improved efficiency is  that the new raindrop extraction 
algorithm has a simpler structure and avoids the need to solve complex 
partial differential equations.

4.2. Evaluation of Results by Random Sampling

To assess the performance of the proposed two-stage algorithm, and to compare with the previous algorithm of 
Yin et al. (2023) that directly applied irCNN model to the unprocessed rainfall images, six different scenarios 
were created as shown in Table 2, using the images from the 12 rainfall events listed in Table 1. The groups 
labeled “Original” use images directly obtained from the camera videos, while those labeled “Raindrop” use the 
raindrop images extracted by the proposed algorithm.

For example, in Case 1, original daytime rainfall images were used from 
which 3784 (80%) were randomly selected for training and 946 (20%) utilized 
for evaluation (see results in Table 3). To minimize estimation uncertainties, 
each evaluation case was repeated five times, and Table 3 reports the average 
performance obtained over the five runs. Note that the irCNN model perfor-
mance reported in Table 3 differs from that presented in Yin et al.  (2023) 
which used only daytime rainfall images, whereas the results reported also 
include nighttime images.

In Cases 1 and 2, only daytime imagery was used to train the irCNN model. 
From Table 3, we see that, for most of the performance metrics, Case 1 (using 
original imagery) obtains slightly better values than Case 2 (using extracted 
raindrop information). More specifically, the MAE and MAPE for Case 1 are 
3.29 mm/hr and 17.06% respectively, which is lower than the corresponding 

Figure 2. Sample images, illustrating the results of raindrop extraction 
under different scenes: Image (a) is a daytime scene taken from Jiang 
et al. (2019), while image (c) shows the corresponding extracted raindrop 
information. Image (c) shows a typical night scene, while image (d) shows the 
corresponding extracted raindrop information.

Case 
no. Rainfall scenario

Image 
type

Training set 
(80% data)

Validation set 
(20% data)

1 Daytime Original 3,784 946

2 Daytime Raindrop 3,784 946

3 Nighttime Original 4,820 1,205

4 Nighttime Raindrop 4,820 1,205

5 Daytime & nighttime Original 8,604 2,151

6 Daytime & nighttime Raindrop 8,604 2,151

Table 2 
Scenarios of Randomly Selected Images
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values obtained in Case 2; the R 2 and NSE for Case 1 are 0.91 and 0.89 
respectively which is overall larger than the corresponding values obtained in 
Case 2. From Figure 3, it can be seen that, for the daytime scenes, the irCNN 
model shows better performance in estimating rainfall intensity directly 
from the original rainfall images than using the raindrop information. This 
is because the extra step of first extracting raindrop information from the 
images can increase the error rate. Nonetheless, the MAPE performance of 
Case 2 still remains within 20%.

In Cases 3 and 4, only nighttime imagery was used to train the irCNN 
model. From Table 3, we see the reverse of the daytime imagery results, with 
Case 4 (using extracted raindrop information) obtaining better values for all 
the performance metrics compared with Case 3 (using original imagery). 
For example, the MAE in Case 3 was 6.60 mm/hr, which is significantly 

higher than in Case 4 with an MAE of 4.76 mm/hr. This is because nighttime imaging relies mainly on the 
raindrops reflecting other (chaotic) light sources, which makes it more difficult to detect and capture the 
raindrops clearly. However, at night, the extraction algorithm does not have to contend with ambient environ-
mental brightness. The net effect is that, although overall performance declines at night, the two-stage method 
achieves better overall performance than the original (Yin et al., 2023) methodology.

Finally, Cases 5 and 6 used images randomly selected from both daytime and nighttime. From Table 3, we 
see that Case 6 (using extracted raindrop information) achieves significant performance improvement over 
all performance metrics compared with Case 5 (using original imagery). In terms of NSE and KGE, Case 
6 values are 0.85 and 0.87 respectively, which is all significantly greater than the corresponding values in 
Case 5. When exposed to both daytime and nighttime imagery the estimation problem is much more compli-
cated, due to changes in the background and brightness of the images. Overall, our results indicate that the 
two-stage method is more robust (than when video imagery is used directly) when dealing with complex 
rainfall scenarios.

Because urban flooding is often caused by short-duration high-intensity rainstorms, we next assess whether the 
model can predict intense rainfall events accurately. For each of the Cases 1–6 in Table 2, we further classified the 
events as being light rainfall (<12 mm/hr), moderate rainfall (12–17.9 mm/hr), heavy rainfall (18–23.9 mm/hr), 
rainstorm (24–35.9 mm/hr), intense rainstorm (36–60 mm/hr), and extraordinary rainstorm (>60 mm/hr). The 
results are presented in Table 4 with for different categories of rainfall intensities.

As can be seen from Table 4, for daytime imagery (Cases 1 and 2), both methods perform quite well across the 
entire range with the original approach (Case 1) being better in the intermediate intensity categories but the 
two-stage approach (Case 2) performing better for the “extraordinary rainstorm” category. For nighttime imagery 

Case no. MAE (mm/h) MAPE (%) R 2 NSE KGE

1 3.29 17.06 0.91 0.89 0.86

2 4.07 19.58 0.82 0.80 0.89

3 6.60 28.35 0.87 0.87 0.93

4 4.76 19.73 0.91 0.91 0.96

5 7.54 29.50 0.80 0.73 0.77

6 5.77 22.69 0.87 0.85 0.87

Table 3 
Average Performance Metric Values When Evaluated Using Random 
Sampling

Figure 3. Validation results of irCNN models by random sampling.
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(Cases 3 and 4), the two-stage approach (Case 4) is clearly better across the entire range of intensities. When 
using mixed day and night time imagery (Cases 5 and 6), the two-stage approach is significantly better for both 
very light and higher intensity rain events and both methods are comparable in the intermediate range. In particu-
lar, the original method performs noticeably poorly at both extremes (light and intense/extraordinary). Further, 
for the two-stage approach, there is a generally flat-to-improving trend from light to higher intensity rainfall 
cases, and much less variability between daytime, nighttime and mixed cases.

4.3. Evaluation on Independent Rainfall Events

To investigate the predictive performance of the two-stage algorithm for new rainfall events, several independent 
rainfall events under both daytime and nighttime conditions were selected from the 12 rainfall events in Table 1 
for evaluation. When dividing rainfall events into the training set and evaluation set, the following conditions 
were used: (a) the rainfall intensity of the independent rainfall events for evaluation is medium compared to 
other events, and (b) the duration of the rainfall events used for training is sufficiently long to provide adequate 
data (Yin et al., 2023). Thus, rainfall event 1 in Table 1 was selected as an independent evaluation event for the 
daytime scenario, and event 11 was selected for the nighttime scenario. A total of 8 cases for independent events 
evaluation were created (see details in Table 5). For example, in Case 7, model training was conducted using the 
original daytime images from events 2–6 (see Table 1) those from event 1 were used for evaluation.

The evaluation results are shown in Table 6. As before, each evaluation test was repeated five times, and average 
performance values are reported. As can be seen, the evaluation results are similar to those reported in Table 3. 
More specifically, when comparing Cases 7 and 8, the evaluation results using original daytime rainfall images 
(Case 7) are slightly better than the corresponding results obtained using raindrop extraction (Case 8), while both 
cases are slightly worse than those reported in Table 3. Similar results can be observed for the nighttime scenes. 
Again, as shown in Figure 4 for the daytime imagery, raindrop extraction (Case 8) results in worse performance 
than the original method (Case 7).

Case No.
Light rainfall 

(%)
Moderate 

rainfall (%)
Heavy rainfall 

(%) Rainstorm (%)
Intense rainstorm 

(%)
Extraordinary 
rainstorm (%)

1 25.31 15.22 16.59 15.03 18.42 16.20

2 24.73 15.29 22.34 19.52 18.70 11.44

3 36.49 32.04 20.65 27.84 22.68 18.09

4 27.57 16.53 13.79 19.11 17.11 15.27

5 38.00 16.60 25.01 31.10 35.41 34.64

6 27.01 19.13 22.96 20.03 24.00 22.16

Table 4 
Average Values of Mean Absolute Percentage Error (%) When Validated Using Random Sampling for Different Categories 
of Rainfall (Case Number is Given in Table 2)

Case No. Rainfall scenario Image type Training set (no. of images) Validation set (no. of images)

7 Daytime Original Event 2–6 (4,058) Event 1 (672)

8 Daytime Raindrop Event 2–6 (4,058) Event 1 (672)

9 Nighttime Original Event 7–10 and 12 (5,505) Event 11 (520)

10 Nighttime Raindrop Event 7–10 and 12 (5,505) Event 11 (520)

11 Daytime scene for training, nighttime scene for evaluation Original Event 1–6 (4,730) Event 11 (520)

12 Daytime scene for training, nighttime scene for evaluation Raindrop Event 1–6 (4,730) Event 11 (520)

13 Daytime scene for evaluation, nighttime scene for training Original Event 7–12 (6,025) Event 1 (672)

14 Daytime scene for evaluation, nighttime scene for training Raindrop Event 7–12 (6,025) Event 1 (672)

Table 5 
Details of the Selected Independent Evaluation Events
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Looking at the nighttime imagery results (Cases 9 and 10), we see that Case 
9 (using original rainfall imagery) performs consistently worse than Case 10 
(using extracted raindrop information). Figure 5, shows that the scatterplot 
for Case 9 is more dispersed than for Case 10.

To further investigate generalization ability of the two-stage algorithm, 
we also examined Cases 11 and 12, where daytime imagery was used for 
training but nighttime imagery was used for evaluation, and Cases 13 and 
14, where nighttime imagery was used for training but daytime imagery 
was used for evaluation. From Figure 6, we see that the original approach 
(cases 11 and 13) fails when using models trained on daytime (night-
time) images but tested under nighttime (daytime) conditions (Figures 6a 
and 6c). In contrast,  the two-stage approach continues to function, demon-
strating some degree of ability to generalize across conditions (Figures 6b 
and 6d).

Finally, Cases 7–10 were further classified into rainfall intensities of vari-
ous degrees, and the MAPE evaluation results are listed in Table 7. As can be seen from this table, model 
predictions for relatively small rainfall intensities (e.g., light rainfall and moderate rainfall) exhibit lower 
accuracy than those for larger intensities (e.g., heavy rain, rainstorm, intense rainstorm, and extraordinary 
rainstorm). Further, the two-stage algorithm (Cases 8 and 10) achieves generally better results under larger 
rainfall intensity cases.

4.4. Practical Application

Although to some extent the mismatch of rainfall intensity information provided by the rain gauge records and 
the instantaneous rainfall images can be addressed by the linear interpolation method, the real situation can be 
more complex. To examine this situation in more depth, the rain gauge records at 1 min intervals were interpo-
lated once, then compared with the average rainfall intensities computed from the corresponding 30-s-video (30 
frames). The results, for daytime and nighttime conditions are shown in Figure 7, where the histograms represent 
the average rainfall intensity computed using the two-stage algorithm, the red dots are the values obtained using 
gauges every 1 minute, and the blue dots indicate the interpolated values. As can be seen, the two-stage algorithm 
exhibits a high degree of accuracy (small errors) at most of the time steps.

Finally, the average rainfall intensity was computed using the two-stage algorithm for all of the video frames 
within a 1 min interval, for Cases 7–10, and compared with the rainfall intensity measurements provided 
by the rain gauge (at 1-min temporal resolution). The results are shown in Table 8. We can compare these 

Case No. MAE (mm/h) MAPE (%) R 2 NSE KGE

7 2.56 18.64 0.93 0.92 0.90

8 3.70 20.95 0.81 0.80 0.85

9 3.52 26.24 0.64 0.63 0.70

10 2.98 20.88 0.81 0.77 0.82

11 Fail —— —— —— ——

12 4.19 28.74 0.46 0.44 0.62

13 Fail —— —— —— ——

14 5.39 32.89 0.71 0.64 0.74

Table 6 
Average Performance Metric Values When Validated by Independent 
Rainfall Events

Figure 4. Evaluation results for daytime scenes in (a) Case 7 using original rainfall imagery, and (b) Case 8 using extracted 
raindrop information.
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interval averaged results with those provided in Table 6 for instantaneous rainfall intensity and in Table 8 
for average rainfall intensity within 1 min),for Cases 7–10. As can be seen the estimation is further reduced 
when we consider the average rain intensity in a 1 min period. For the two-stage approach, the 1-min aver-
age MAPE of rainfall intensity under daytime and nighttime conditions is 10.86% and 10.62%, respectively 
(significantly reduced compared to the corresponding results in Table 6). So, the use of 1-min average rain-
fall intensity rather than instantaneous rainfall intensity, can provide a viable approach for many practical 
applications.

5. Conclusions
Real-time rainfall intensity can be difficult to ascertain from video imagery due to the confounding influences 
of the background, sources of noise, and variations in brightness. The proposed two-stage algorithm for rainfall 
intensity estimation from surveillance images works by first extracting raindrop information from the surveil-
lance images, and then using a deep learning irCNN method to estimate the rainfall intensity using the extracted 
raindrop information as input data.

We tested the proposed two-stage algorithm using video imagery collected using real-life surveillance cameras in 
Hangzhou, China, and compared it with the original single-stage approach reported by Yin et al. (2023). Based 
on the results obtained, our main findings can be summarized as:

1.  The two-stage rainfall estimation algorithm can provide good quality rainfall intensity estimates using surveil-
lance camera imagery.

2.  The two-stage model has improved prediction and generalization capability when compared to the origi-
nal single-stage approach, particularly under nighttime conditions, or when a mix of daytime and nighttime 
images is used for training.

3.  In general, nighttime performance tends to be worse than daytime performance due to the fact that raindrops 
are usually easier to detect in daytime images (at night the light is dimmer so that other sources of noise can 
affect predictive performance). However, under these conditions the two-stage approach becomes especially 
beneficial.

4.  By aggregating the rainfall intensity estimates up to a 1-min resolution (as opposed to 1-s resolution), the 
MAPE prediction error of the two-stage algorithm can be cut in half (from ∼20% to ∼11%). These 1-min 
aggregate estimates should be suitable for many practical applications, such as urban flood modeling and 
prediction.

From the results obtained, it is clear that the two-stage approach proposed in this paper can effectively 
improve the generalization ability of the irCNN model, especially in complex rainfall scenes with insufficient 

Figure 5. Evaluation results for nighttime scenes in (a) Case 9 using original rainfall imagery, and (b) Case 10 using 
extracted raindrop information.
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illumination (such as nighttime scenes). This is important for the prevention 
and control of urban flooding, especially when heavy rainfall events and 
associated flooding events take place during nighttime periods. Another 
merit of the proposed method is that it can use existing cameras for rain-
fall intensity estimation without the need for additional sensors, and hence 
can provide urban rainfall data at low cost. It is noted that some potential 
limitations of the proposed two-stage model exist for practical applications, 
such as the mismatch of rainfall data recorded by rainfall gauges (cumu-
lative rainfall data) and rainfall images (instantaneous rainfall intensity). 
This is due to difference in measurement frequency, and the errors caused 
by the raindrop extraction algorithm, both of which require further investi-
gations. While practical implementation of the irCNN model may require 
the availability of a large amount of training data, this can be obtained from 
traffic cameras that are widely distributed in urbanized regions. However, 

Figure 6. Evaluation results for (a) Case 11 with original rainfall images, (b) Case 12 with extracted raindrop information, 
(c) Case 13 with original rainfall images, and (d) Case 14 with extracted raindrop information.

Case 
No.

Light 
rainfall (%)

Moderate 
rainfall (%)

Heavy 
rainfall (%)

Rainstorm 
(%)

Intense 
rainstorm 

(%)

7 28.28 22.95 13.96 12.06 11.25

8 21.97 23.48 18.44 19.69 13.74

9 37.83 17.41 20.96 19.98 ——

10 29.21 16.96 19.10 13.88 ——

Table 7 
Average Values of Mean Absolute Percentage Error When Validated Using 
Independent Rainfall Events of Various Rainfall Categories
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the data privacy issue needs to be carefully addressed when accessing data 
from public sources. Further, while model performance can be affected by 
lighting, background motion and imaging parameters, proper training of the 
raindrop extraction algorithm can effectively reduce such impacts.

Finally, the use of the video data (sequences of images) rather than individual 
still images can be a way to further improve the mode's performance, and this 
should be explored in future studies. In this regards, while this study aimed 
to demonstrate the utility of the proposed method using data from a single 
camera, future work should explore the performance of the proposed model 
using information provided by networks of cameras.

Figure 7. Independent rainfall events validation results of two-stage algorithm applied to 30-s resolution for (a) daytime 
scenes, and (b) nighttime scenes.

Case No. MAE (mm/h) MAPE (%) R 2 NSE KGE

7 2.14 10.40 0.98 0.96 0.83

8 2.85 10.86 0.95 0.90 0.84

9 3.82 18.03 0.67 0.62 0.62

10 2.54 10.62 0.88 0.73 0.79

Table 8 
Average Performance Metric Values of the Two-Stage Algorithm Using 
Independent Rainfall Events of 1-Min Resolution
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Data Availability Statement
The rainfall event videos and the measured rainfall data can be downloaded from https://doi.org/10.6084/ 
m9.figshare.22122500.v1.
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