Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113202
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorLagomarsino-Oneto, D-
dc.creatorDe Leo, A-
dc.creatorStocchino, A-
dc.creatorCucco, A-
dc.date.accessioned2025-05-29T07:59:19Z-
dc.date.available2025-05-29T07:59:19Z-
dc.identifier.issn0094-8276-
dc.identifier.urihttp://hdl.handle.net/10397/113202-
dc.language.isoenen_US
dc.publisherWiley-Blackwell Publishing, Inc.en_US
dc.rights© 2024. The Authors.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Lagomarsino-Oneto, D., De Leo, A., Stocchino, A., & Cucco, A. (2024). Unraveling the non-homogeneous dispersion processes in ocean and coastal circulations using a clustering approach. Geophysical Research Letters, 51, e2023GL107900 is available at https://doi.org/10.1029/2023GL107900.en_US
dc.titleUnraveling the non-homogeneous dispersion processes in ocean and coastal circulations using a clustering approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume51-
dc.identifier.issue9-
dc.identifier.doi10.1029/2023GL107900-
dcterms.abstractDispersion processes in environmental flows have been traditionally studied under the strong assumption of homogeneous, isotropic and stationary turbulence. To overcome this limitation, we propose a new approach that combines autocorrelation analysis of simulated Lagrangian trajectories together with unsupervised clustering. To test the approach, we consider several dynamic scenarios around a coastal gulf, subject to different forcing, in order to compare our method with other approaches. Lagrangian trajectories forced by the varying coastal circulation exhibited different behaviors, looping and non-looping paths, and produced a variety of Lagrangian autocorrelation functions. Our approach proves to be able to reveal spatio-temporal variations in ocean dispersion processes without any a priori knowledge of the character of the trajectories. Clusters based on the autocorrelation functions are associated to different inhomogeneous dispersion processes. Finally, we propose a new stochastic model capable of predicting the different forms of autocorrelations.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGeophysical research letters, 16 May 2024, v. 51, no. 9, e2023GL107900-
dcterms.isPartOfGeophysical research letters-
dcterms.issued2024-05-16-
dc.identifier.scopus2-s2.0-85192384690-
dc.identifier.eissn1944-8007-
dc.identifier.artne2023GL107900-
dc.description.validate202505 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextEU-Next Generation EU Mission 4 “Education and Research” Project IR0000032-ITINERIS-Italian Integrated Environmental Research Infrastructures System-CUP B53C22002150006en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lagomarsino‐Oneto_Unraveling_Non_Homogeneous.pdf1.78 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.