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Abstract Dispersion processes in environmental flows have been traditionally studied under the strong
assumption of homogeneous, isotropic and stationary turbulence. To overcome this limitation, we propose a
new approach that combines autocorrelation analysis of simulated Lagrangian trajectories together with
unsupervised clustering. To test the approach, we consider several dynamic scenarios around a coastal gulf,
subject to different forcing, in order to compare our method with other approaches. Lagrangian trajectories
forced by the varying coastal circulation exhibited different behaviors, looping and non‐looping paths, and
produced a variety of Lagrangian autocorrelation functions. Our approach proves to be able to reveal spatio‐
temporal variations in ocean dispersion processes without any a priori knowledge of the character of the
trajectories. Clusters based on the autocorrelation functions are associated to different inhomogeneous
dispersion processes. Finally, we propose a new stochastic model capable of predicting the different forms of
autocorrelations.

Plain Language Summary Ocean and coastal circulations develop in complex domains, especially
along the shorelines, and the resulting flow is turbulent in character and inherits the inhomogeneities from the
generating forces. When we come to study how these chaotic circulations transport mass, we must expect that
the associated dispersion is equally turbulent and high variable in time and space. Observations of particle paths
taught us how the trajectories could be complicated, often showing looping behaviors generated by different
mechanisms. Despite this complexity, many available studies on ocean and coastal dispersion rely on
considering the process as homogeneous (no variations in space) and, applying different spatial and temporal
averages, try to grasp the overall picture of the dispersion. We propose a new approach that combines the
fundamentals of the dispersion theories with an automated algorithm for clustering. We show that this approach
is able to retain the highly inhomogeneous character of the ocean dispersion, at the same time, showing the
physical link between the circulations and its ability to transport mass.

1. Introduction
The ability of ocean and coastal circulations to transport heat and mass has always been considered of paramount
importance due to the impact on atmospheric climate (Holmes et al., 2019) and the distribution of nutrients
essential for sustaining ocean life (Lu & Gan, 2023). Mass and heat transport are strongly influenced by the local
dispersion processes, which in turn are controlled by ocean and coastal circulations. Material dispersion by
environmental flows have been traditionally studied following Taylor's theory (Taylor, 1921). He was inspired by
observing that turbulence on geophysical scales spreads heat and substances similarly to what happens in mo-
lecular diffusion. Following this idea, he discovered the connection between the time evolution of particle
dispersion and the velocity autocorrelations of the underlying flow. This also implies the existence, for large
enough times, of an asymptotic regime with an associated turbulent diffusion coefficient (Eddy Diffusivity).

Although these fascinating results had been proven to be effective in certain real contexts (LaCasce, 2008), the
assumption of homogeneous, isotropic and stationary turbulence is often not correct in geophysics. Therefore,
several methods have been proposed to overcome this limitation, usually detecting homogeneous subsets where
Taylor's hypotheses are restored. Examples of methodologies, aimed to obtain spatial distributions of the dif-
fusivities, can be found in Davis (1991), later adopted by Jakobsen et al. (2003). Moreover, coherent structures are
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known to affect dispersal statistics. Indeed, ocean eddies can trap particles for periods of the order of their typical
life‐time (Provenzale, 1999), showing loops in Lagrangian trajectories (loopers). In Richardson (1993), the
importance of coherent eddies in setting the oceanic kinetic energy budget was demonstrated by classifying float
trajectories with two or more consecutive loops in the same direction. Afterward several studies aimed to make
this classification more systematic.

In particular, Veneziani et al. (2004) studied the loopers distribution in North Atlantic mesoscale turbulence by
thresholding a scalar quantity, called spin, to automatically separate trajectories. They were able to identify
geographical areas dominated either by looper or non‐loopers, hence quantifying dispersal on statistically ho-
mogeneous regions. This approach was inspired by thinking Lagrangian velocities as realizations of a linear
stochastic process with a deterministic term that corresponds to a uniform circular motion. A similar strategy was
developed in Rupolo (2007), where trajectories were classified introducing a new dimensionless parameter,
defined as the ratio between the acceleration and velocity time scales, that was inspired by a model in which
deterministic circular motions are substituted by adding accelerations in the stochastic process. This strategy
allowed a worldwide evaluation of dispersal properties in the main oceanic current systems. Furthermore, Griffa
et al. (2008) focused the attention on dynamics in the upper ocean following the same approach of Veneziani
et al. (2004) to analyze data from drifter measurements. The same data set was exploited by Lumpkin (2016) to
propose a more robust criterion for loopers detection. Instead of considering chunks of trajectories of a fixed
duration (as done in previous works), they split each trajectory into intervals where spin persisted keeping the same
sign, then judging as loopers those intervals whose duration was at least twice the period of the circular motion
associated to the corresponding spin value. Other works addressed loopers detection from purely geometric
perspectives. Dong et al. (2011) presented amethodology to identify trajectories which cross themselves in at least
two points, looping in the same direction and thresholding on the mean period of rotation. Methods proposed in
Lilly and Olhede (2009) and Lilly et al. (2011) were designed to separate from background flow the motion due to
waves and vortices. A valuable feature of their approach was to allow a description of trajectories that went beyond
the simplifying assumption of near‐circular loops. The effect of eddies on tracer dispersion has been also largely
studied in the Eulerian framework. Particularly in Haigh et al. (2020, 2021a, 2021b) a quasi‐geostrophic ocean
motion was simulated to systematically investigate the effect of small‐scale structures on Eddy Diffusivity fields
of tensor form. Finally, recent advances in Deep Learning and Artificial Intelligence have been introduced also in
this field. For example, Xu et al. (2019) borrowed state‐of‐art techniques from Computer Vision to detect surface
eddies from SSH data outperforming more traditional algorithms. Moreover, a clustering approach has been
introduced by I. M. Koszalka and LaCasce (2010) on Lagrangian drifter data. In the latter study, the binning
technique used by Davis (1991) was replaced by the use of a clustering algorithm of the drifter‐derived velocities.

In our study we go back to Taylor's statement that, for a homogeneous environment, the dispersal process is driven
by the velocity correlation. We apply unsupervised Machine Learning to automatically identify clusters of tra-
jectories with similar velocity autocorrelations. While being based on a solid theoretical result this method is fully
data‐driven, hence overcoming limitations related with any a priori modeling assumption about the underlying
processes and avoiding technical issues like tuning thresholds. The method is compared with previous strategies
on changing dynamic scenarios around a coastal gulf (in terms of both circulation and wind). Our approach can
automatically depict spatio‐temporal variations in ocean dispersion, recovering also the already known phe-
nomenology, particularly loopers. Finally, to interpret our results we propose a stochastic model that describes
well all different profiles of autocorrelation identified by the algorithm. Discussing the meaning of model pa-
rameters also gives the opportunity for a critical review of quantities which have been traditionally used to
characterize dispersion.

2. Material and Methods
2.1. The Study Area and the Circulation Model

For the present analysis, we selected as study area the Gulf of Oristano (Italy), located on the west coast of
Sardinia Island (approximately between 8.48 E and 8.68 E and 39.78 N and 39.98 N, Italy). It is a shallow water
semi‐ enclosed bay of about 150 km2 (Figure S1 in Supporting Information S1) with a 9 km wide opening into the
open sea (Western Mediterranean Sea). We refer to the Supporting Information S1 for further details.

In the past decades various oceanographic studies have been carried out to investigate the water circulation in this
stretch of coast (Coppa et al., 2013, 2019; Cucco, Sinerchia, Lefrançois, et al., 2012; Cucco, Sinerchia, Ribotti,
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et al., 2012; Cucco et al., 2006, 2016; De Falco et al., 2008; Farina et al., 2018; Ferrarin & Umgiesser, 2005;
Magni et al., 2008; Umgiesser et al., 2014). In most of the applications SHYFEM (System of Hydrodynamic
Finite Element Model) (Umgiesser et al., 2004), a 3D‐oceanographic model based on the finite element method,
has been successfully applied to investigate the main hydrodynamics and the transport time scales in the Gulf and
surrounding coastal areas (Coppa et al., 2013, 2019; Cucco, Sinerchia, Lefrançois, et al., 2012; Cucco et al., 2006,
2016; Farina et al., 2018).

In this study, we adopted SHYFEM to reproduce the surface water circulation inside and outside the Gulf during a
whole meteorological year including the main atmospheric and oceanographic forcing. The same model setup
adopted in Farina et al. (2018) was used to reproduce the main surface transport path in the area. Numerical
simulations were performed to reproduce the surface water circulation during the years 2017 and 2018. The model
outputs, consisting of the horizontal components of the current velocity computed at 2.5 m depth and at hourly
frequency, were resampled on a 100 m regular mesh. Only the data obtained from the second‐year model run were
used for the analysis in order to avoid any disturbance generated by the initial conditions of the model.

2.2. Clustering Technique and Its Application to Lagrangian Dispersion

Clustering is a branch of unsupervised learning that aims at finding groups (clusters) of nearby points in a given
data set. A cluster is then meaningful if distances between its points are significantly smaller than distances
between its points and those belonging to other clusters. Specifically, K‐means divides the data space into K
clusters producing for each a corresponding prototype μk (or in other words the centroid of the cluster) and a label
indicating to which cluster each sample data belongs. Mathematically this problem can be stated as follows: given
a data set of N points {x1, …, xN} in a D‐dimensional Euclidean space with norm ‖…‖, solve the optimization
problem of finding arg min( μk,rnk) J, with

J =∑
N

n=1
∑
K

k=1
rnk‖xn − μk‖

2 (1)

where rnk is 1 if the nth sample is assigned to the kth cluster, identified by the prototype μk, and 0 otherwise. In other
words, we seek for a pair (μk, rnk) that minimizes the sum of the squares of the distances of each point to its
associated prototype. It can be seen easily that for a fixed set of prototypes the following definition of rnk is optimal:

rnk =
⎧⎨

⎩

1 if k = argminj ‖xn − μj‖
2

0 otherwise.
(2)

Moreover, for a fixed partition rnk of a given data set, a minimum of the cost function J is given by

μk =
∑nrnkxn
∑nrnk

, (3)

which means that each optimal prototype is in fact the centroid of all points in the corresponding cluster.
Equations 2 and 3 represent a solution of the K‐means problem, for more details on the algorithm see for example,
Bishop and Nasrabadi (2006).

A key point of our method, and the main difference compared to previous studies (I. Koszalka et al., 2011; I. M.
Koszalka & LaCasce, 2010), is to apply clustering to Lagrangian velocity autocorrelations of the ith Lagrangian
velocity component uLi

, defined following Taylor (1921) as:

R ii(τ) =
ρLii
(τ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρLii
(0)2

√ , ρLii
(τ) = 〈uLi

(t)uLi
(t + τ)〉. (4)

where the brackets 〈⋅〉 in ρLii
(τ) indicate an average over the entire duration of each trajectory. Moreover, the

integral Lagrangian time scale along the ith direction can be then evaluated as the time integral of Equation 4.
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Four test cases were performed varying the main parameters of the Lagrangian simulations, see Table S1 in
Supporting Information S1. Hereinafter, we only show the results for the Test 1, and we refer to the SI document
for comparison among the test cases.

Specifically the components of a sample vector xn are values of either R uu(τ) or R vv(τ) of a given Lagrangian
trajectory, at each time lag τ considered. Two separate clusterings have been performed for R uu and R vv. The
clustering algorithmwas preliminary tested to find the optimal number of clusters, see SI document for the details.

2.3. Stochastic Model for Surface Tracers

Velocity autocorrelation profiles returned by our machine learning approach are physically interpretable.
However, some of them cannot be described through models which were used in previous homogeneous and
stationary contexts (Lumpkin, 2016; Veneziani et al., 2004).

To make a step toward a physical representation of this heterogeneous behavior, we propose a stochastic model
for the velocity of our tracers, extending the model proposed in Veneziani et al. (2004, 2005). Here the two
components of the Lagrangian velocity are described as a bivariate linear stochastic process with the form:

(u,v) = (U + U,V + V) (5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dU = −
1
tU

dt − ΩV dt + λU dξU

dV = −
1
tV

dt +ΩU dt + λV dξV

dU = −
1
TU

Udt + ΛUdWU

dV = −
1
TV

V dt + ΛVdWV

(6)

where the equations for U and V in the system (6) are the same velocities defined in the model presented in
Veneziani et al. (2004), which was already able to produce looping trajectories, for example, Here we add two
more independent one‐dimensional processes U and V, with exponential decaying autocorrelation functions to
each velocity component. Assuming all decaying time scales equal to T and sorting all constants, the whole
process generates trajectories associated with velocity autocorrelations of the form:

R uu(τ) = R vv(τ) =
e− τ/T(cosΩτ + C)

1 + C
. (7)

It is worth observing that Ω is the constant angular frequency associated to a circular contribution to particle
motion, resulting by the coupling terms of first and second equation in system (6). This parameter has been
usually called spin and estimated as:

Ω =
<u′dv′ − v′du′>

2ΔtEc
, (8)

where (u′, v′) are the Lagrangian residual velocities, Ec the kinetic energy, brackets denote average along a
trajectory and Δt is the numerical time step. The spin or its associated rotational period P= 2π/Ω has been used in
several studies to characterize the looping frequency (or the looping period) of the drifters' trajectories (Griffa
et al., 2008; Lumpkin, 2016; Veneziani et al., 2004). In our analysis we mostly use Ω to indicate its instantaneous
value (i.e., without applying the bracket average), and its average will be explicitly indicated. The constant C in
Equation 7 plays the role of a coupling constant, tuning the relative importance of the two additional processes
with respect to the initial two‐dimensional model.

Geophysical Research Letters 10.1029/2023GL107900
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3. Results and Discussion
As a first result our method retrieves, in a fully data‐driven way, typical behaviors that were already identified in
previous works. In particular, profiles 1 and 2 for R uu (Figures 1a1 and 1a2) and profiles 1, 2, and 3 for R vv
(Figures 1b1–1b3) are immediately associated with the well‐known looping trajectories. Exponentially and nearly
exponentially decaying autocorrelation functions can be also recognized, for example, in cluster 7 (Figures 1a7
and 1b7). Other clusters may be related either to peculiar regimes or to transitional cases, as discussed in the
following paragraphs.

The joint occurrence of R uu and R vv can be also evaluated, see the SI document for the details on the compu-
tation. The joint occurrence matrix, built on the entire 72 simulated initial conditions across the year (Figure 1c),
shows the highest frequencies in diagonal and nearly diagonal entries, indicating that similar profiles tend to occur

Figure 1. (a1‐7, b1‐7): representative autocorrelation profiles of the 7 clusters for R uu and R vv, respectively. The error bars indicate one standard deviation with respect
to the mean profile. (c): occurrence matrix (relative frequency of appearance for each pair of R uu and R vv clusters). (d, e) Geographical pattern of the clusters based on
R uu and R vv, respectively. The results used for panels (d, e) correspond to a single simulation, sequence 26.

Geophysical Research Letters 10.1029/2023GL107900
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simultaneously in both components. The strong diagonality observed indicates that the dispersion process tends to
be isotropic, while preserving a strong non‐homogeneity in space and time.

Furthermore, the assignment of each simulated trajectory to a cluster provides spatial patterns of the transport
process across the studied domain (Figures 1d and 1e). Such patterns consist of evolving geographical patches
that can be reviewed as homogeneous in terms of dispersal behavior. Note that the functions shown in the panels
(a1‐a7), (b1‐b7) and (c) are the output obtained by clustering on the whole set of simulations of 120hr duration,
whereas panel (d) and (e) are the results of a specific simulation with a duration of 120hr. In the Supporting
Information S1 we provided the movie showing the time evolution of the clusters for the entire simulated year
based either onR uu orR vv, and the corresponding joint occurrence matrix (clustermovie.mp4 (Movie S1)). It can
be observed how the dispersion process is characterized by relatively strong inhomogeneities in space and time,
which might be ascribed to the shoreline complexity and the variability of the circulation forcing.

A remarkable capability of our approach is that it allows disentangling of complex scenarios that may occur under
different dynamical conditions. Panel (a) in Figure 2 shows the abundance of both R uu and R vv clusters for each
non‐overlapping time sequence (see Supporting Information S1 for details). The complexity of our case study
immediately emerges, with transitions from looping to non‐looping dominated scenarios and vice versa. Spatial
patterns can be used to identify which geographical areas are subject to specific dispersion regimes and to
associate such regimes to physical processes that play a role in determining the local circulation: in particular,
wind has been shown to be the main driven factor in this area (Cucco et al., 2016). Figure 2 shows different
scenarios generated during four selected time sequences in which wind behaves differently in terms of either
direction or intensity (Figures 2b1, 2c1, 2d1, and 2e1). In previous works, the identification of loopers was based
on thresholding absolute values of the spin parameter Ω (Griffa et al., 2008; Lumpkin, 2016). Here, we find that
spatial patterns of high spin (Figures 2b2, 2c2, 2d2, and 2e2) are in agreement with those of simultaneously
oscillating R uu and R vv profiles. However, defining loopers in terms of Ω, which gave good results in homo-
geneous cases, might be more sensitive to the choice of a threshold in our study area. Indeed, here the kinetic
energy (that appears in the definition of Ω in Equation 8) might be not uniformly distributed, being sometimes
subject to strong gradients (Figures 2b3, 2c3, 2d3, and 2e3). A good property of our approach based on profiles of
autocorrelation function is to be more robust against this possible issue. The relation between spin and kinetic
energy for each cluster is further supported by the scatter plots reported in the Supporting Information S1 (Figure
S7 and S8). Moreover, any method based only on spin does not allow to identify further regimes like those
depicted in Figures 2e4 and 2e5 where profiles which exhibit negative lobes in the autocorrelation (Figures 1a5
and 1b5) are dominant in the gulf. Negative lobes are often associated to non‐Brownian diffusive regimes, both
sub‐diffusive and super‐diffusive regimes (Berloff et al., 2002; De Leo et al., 2022). In particular, sub‐diffusion is
associated to a pronounced negative lobe, whereas a negative lobe followed by a positive lobe is linked to super‐
diffusive processes. Examples of these anomalous dispersion regimes have been observed in the transport due to
oceanic gyres (Berloff et al., 2002; Veneziani et al., 2004) and in coastal regions as well (De Leo et al., 2022;
Enrile et al., 2019). The general result that arises from our analysis is that strategies successfully used to char-
acterize dispersion in homogeneous cases are not sufficient when applied to more complex scenarios. Our pro-
posed method aims at tackling this lack of generalization in a fully data‐driven manner.

If we now consider the functional form for the autocorrelations expressed by Equation 7, we can compute the
distributions of the three parameters (T, P and C) by best‐fitting each R uu and R vv with Equation 7, see Sup-
porting Information S1 for the details of the nonlinear fitting.

The T and P time scales also appear in the form previously used for velocity autocorrelations (Lumpkin, 2016;
Veneziani et al., 2004):

R uu(τ) = R vv(τ) = e− τ/T cos(2πτ/P). (9)

However, this formulation cannot describe profiles such as those in panel (a3) of Figure 1. On the contrary, the
formulation suggested by Rupolo (2007) is able to describe autocorrelation functions with a single pronounced
negative lobe depending on the relative values of the velocity decorrelation time compared to the acceleration
decorrelation time. However, the latter failed to describe strongly looping autocorrelation functions.

The new parameter Cmust be greater than or equal to zero and establishes the relative importance of looping and
non‐looping components in the stochastic process. Hence, cases described by Equation 9 are retrieved for C = 0,

Geophysical Research Letters 10.1029/2023GL107900
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Figure 2. (a) Percentage of occurrence of the different clusters shown for 24 out of 72 simulations. Solid square indicates the clusters based onR uu and the solid triangles
show the clusters of R vv. The red rectangles indicate the four sequences shown in the other panels, namely sequence 4 (b1‐b5), 16 (c1‐c5), 26 (d1‐d5), and 70 (e1‐e5).
The four panels, from left to right, for every sequence (row) show the wind rose associated with the 120 hr simulation, the spatial distribution of the sequence averaged spin,
the spatial distribution of the sequence averaged kinetic energy, the spatial distribution of the clusters for R uu and R vv.
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values of 0 < C ≪ 1 are mixed cases dominated by loopers, and the weight of the exponentially decaying part
grows as long as C increases. It can be also observed that this latter limit case of C ≫ 1 can be obtained by the
particular condition C= P= 0, although in practice this combination never emerges from our best fits (Figures 3e
and 3h).

Combined with the data‐driven approach proposed here, the estimation of parameters describing emergent
profiles provides links to physical quantities traditionally used in dispersal studies and allows their change to be
tracked across clusters. We have already mentioned the spin Ω as a successful quantity for loopers detection. In
the ideal case when looping particles, deprived of their mean motion, undergo a uniform circular motion with
radius r and period P, the latter turns out to be exactly P = 2π/Ω. Estimates of Px and Py reveal a well‐defined
value around 20 hr for strong loopers (Figures 3e and 3h), which gives about 0.9 ⋅ 10− 4 s− 1 for the magnitude
of Ω and roughly corresponds to the most frequent value for cluster 1 in R uu (Figure 3c). However, while under
the ideal assumption of uniform circular motion the spin does not depend on time, in our case evaluating Ω locally
in time yields very different values, even close to zero where the trajectory has low curvature. This produces
distributions of Ω which do not show typical emptying close to zero that was reported in previous works instead
(Lumpkin, 2016). On the contrary, other clusters show narrower spin distributions placed around zero, as ex-
pected. Spin analysis also reveals skewness in clusters that exhibit looping behavior, suggesting that in our case
study, rotating particles tend to prefer a direction of rotation. This fact could be associated with some coherent
process happening in the area like inertial oscillations which have a period that is compatible with observed values
of Px and Py. Indeed, for looping trajectories these two parameters show very concentrated distributions of values
around 20 hr that could be associated to typical periods of inertial gravity waves.

Similar to the definition of Taylor (1921)'s integral time scale, by simple integration of Equation 7, we can derive
the formula:

TL = (
1

1 + C
)

⎡

⎢
⎢
⎢
⎢
⎣

T
1 + 4π2T2

P2

+ CT

⎤

⎥
⎥
⎥
⎥
⎦
, (10)

that relates T, P, and C with TL as defined by Taylor. Under the assumption of homogeneous turbulence, this time
scale also represents the time separation that has to be significantly overcome to have uncorrelated Lagrangian
velocities, thus indicating a transition from a ballistic to a diffusive regime in particle dispersion. However, it is
well known that if Taylor's assumptions are not fulfilled, this association with the establishment of a diffusive
regime could be not reached. This is also the case of looping particles, where lobes in the autocorrelation of
opposite sign largely cancel their contribution to the integral, yielding very low values (e.g., substituting the
values of T = 40 hr, P = 20 hr and C = 0 in Equation 10 gives TL ∼ 15 min). For this reason, in presence of
oscillations, the Lagrangian time scale sometimes has been alternatively defined as the first zero of the auto-
correlation (Lumpkin, 2016; Pope, 2000), which for C = 0 is P/4. Although this latter definition can be more
effective for certain applications, it does not apply to positive valued autocorrelation functions and it is sometimes
replaced considering the first lag time at which it drops below a given threshold (Azevedo et al., 2017).

What emerges clearly from our analysis is the role of three distinct time scales when it comes to distinguish
different dispersion regimes. Indeed, the proposed model for the Lagrangian velocity autocorrelation couples
together T, P, and TL, the last one computed from R uu and R vv. Figure 3 panels (j) and (k) show the time dis-
tribution of the total absolute dispersion a2(t) (Enrile et al., 2019; LaCasce, 2008) averaged over each cluster
computed using R uu. From inspecting the time trends of a2(t), it is clear how Taylor's definition of TL marks the
end of the t2 scaling. The time scale at which the asymptotic diffusive regime starts is, instead, better represented
by T. For the non‐looping trajectories, the Taylor integral scale TL correctly tends to coincide with the estimated T.
The signature of the looping character still persists in the a2(t) curves, see cluster 1 in panel (j). A similar behavior
was observed by Enrile et al. (2019) where the absolute dispersion was computed starting from High‐Frequency
radar measurements. In the above case, the tidal forcing was responsible for the sustainment of looping trajec-
tories and the corresponding absolute dispersion showed oscillations that tend to be dumped around an almost
linear trend on a long time‐scale, as in the present case. Moreover, anomalous dispersion regime (sub‐ or super‐
diffusive) can be observed for the case where the autocorrelation functions showed pronounced negative and
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Figure 3. (a, b) Show the pdf of the integral Lagrangian time scale in x and y respectively. (c): pdf of the spin values associated with each cluster. (d–f) Show the pdf
distribution for T, P and C of the proposed formula of Equation 7 for R uu. (g–i) Pdfs of T, P and C for R vv. (j, k) Distribution of the total absolute dispersion for each
R uu cluster.
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positive lobes (Figures 1a4–1a6). Finally, it is worth noting that similar results for the absolute dispersion were
obtained averaging over the clusters based on R vv, see Figure S9 in Supporting Information S1.

4. Conclusions
The purpose of the present analysis was twofold: first, we aimed to apply a technique based on unsupervised
clustering to the velocity autocorrelation functions to distinguish regions with similar dispersion properties;
second, we proposed a new stochasticmodel that is able to represent the variability of the autocorrelation functions,
extending the work of Veneziani et al. (2004) and Rupolo (2007). We tested the proposed approach using a 1‐year
long simulation of the coastal circulation of a Gulf in the Western Mediterranean Sea. However, the proposed
methodology is generally applicable also in open ocean contexts. Lagrangian velocity autocorrelations were
computed using the output of the circulation model. The application of the K‐Means algorithm proved to generate
clusters that could be clearly interpreted in terms of dispersion processes. Themain output is a temporal and spatial
mapping of coastal sub domains with similar dispersion properties. The proposed approach showed to be able to
efficiently distinguish among looping and non‐looping particle trajectories, without any a‐priori assumption on the
looping character of the trajectories as required by most of the available methodologies. Moreover, the spatial and
temporal analysis of the cluster patterns and their joint occurrence matrix showed how the dispersion, although
non‐homogeneous, seemed to be fairly isotropic. A further important result was to suggest a new analytic
expression for the autocorrelation functions, where the exponential decay and the periodic character were included
in the same theoretical framework. Three time scales emerged clearly in order to describe the dispersion processes.
The Taylor's integral time scale proved to remain valid, however, in the presence of looping trajectories, it must be
coupled to the looping period and a longer time scale that describes the long‐time exponential decay. These three
time scales have a clear signature in the time evolution of the total absolution dispersion.
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