Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113136
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorOuyang, Wen_US
dc.creatorLiu, Yen_US
dc.creatorPong, TKen_US
dc.creatorWang, Hen_US
dc.date.accessioned2025-05-23T05:25:00Z-
dc.date.available2025-05-23T05:25:00Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/113136-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2025 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Ouyang, W., Liu, Y., Pong, T. K., & Wang, H. (2025). Kurdyka-Łojasiewicz Exponent via Hadamard Parametrization. SIAM Journal on Optimization, 35(1), 62-91 is available at https://doi.org/10.1137/24m1636186.en_US
dc.subjectKurdyka-Łojasiewicz exponent, overparametrization, second-order stationarity,strict saddle propertyen_US
dc.subjectOverparametrizationen_US
dc.subjectSecond-order stationarityen_US
dc.subjectStrict saddle propertyen_US
dc.titleKurdyka-Łojasiewicz exponent via Hadamard parametrizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage62en_US
dc.identifier.epage91en_US
dc.identifier.volume35en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/24M1636186en_US
dcterms.abstractWe consider a class of ℓ1-regularized optimization problems and the associated smooth “overparameterized” optimization problems built upon the Hadamard parametrization, or equivalently, the Hadamard difference parametrization (HDP). We characterize the set of second-order stationary points of the HDP-based model and show that they correspond to some stationary points of the corresponding ℓ1-regularized model. More importantly, we show that the Kurdyka-Łojasiewicz (KL) exponent of the HDP-based model at a second-order stationary point can be inferred from that of the corresponding ℓ1-regularized model under suitable assumptions. Our assumptions are general enough to cover a wide variety of loss functions commonly used in ℓ1-regularized models, such as the least squares loss function and the logistic loss function. Since the KL exponents of many ℓ1-regularized models are explicitly known in the literature, our results allow us to leverage these known exponents to deduce the KL exponents at second-order stationary points of the corresponding HDP-based models, which were previously unknown. Finally, we demonstrate how these explicit KL exponents at second-order stationary points can be applied to deducing the explicit local convergence rate of a standard gradient descent method for minimizing the HDP-based model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2025, v. 35, no. 1, p. 62-91en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2025-
dc.identifier.eissn1095-7189en_US
dc.description.validate202505 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3609a-
dc.identifier.SubFormID50456-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
24m1636186.pdf565.05 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.