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Abstract. We consider a class of \ell 1-regularized optimization problems and the associated
smooth ``overparameterized"" optimization problems built upon the Hadamard parametrization, or
equivalently, the Hadamard difference parametrization (HDP). We characterize the set of second-
order stationary points of the HDP-based model and show that they correspond to some stationary
points of the corresponding \ell 1-regularized model. More importantly, we show that the Kurdyka--
\Lojasiewicz (KL) exponent of the HDP-based model at a second-order stationary point can be inferred
from that of the corresponding \ell 1-regularized model under suitable assumptions. Our assumptions
are general enough to cover a wide variety of loss functions commonly used in \ell 1-regularized models,
such as the least squares loss function and the logistic loss function. Since the KL exponents of many
\ell 1-regularized models are explicitly known in the literature, our results allow us to leverage these
known exponents to deduce the KL exponents at second-order stationary points of the corresponding
HDP-based models, which were previously unknown. Finally, we demonstrate how these explicit KL
exponents at second-order stationary points can be applied to deducing the explicit local convergence
rate of a standard gradient descent method for minimizing the HDP-based model.

Key words. Kurdyka--\Lojasiewicz exponent, overparametrization, second-order stationarity,
strict saddle property
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1. Introduction. The idea of introducing redundant or an extra number of vari-
ables to reformulate an optimization problem has received much attention recently
[22, 30, 39, 53]. This technique of overparametrization, though counterintuitive at
first glance, can lead to potential advantages including smoothness of the objective
of the overparameterized model [30, 32, 45], better generalization [1, 42, 51], and im-
plicit regularization [22, 36, 53, 57]. These benefits have been witnessed and analyzed
in various machine learning models including deep neural networks, kernel methods,
and linear models [7, 8, 20, 25], and there has been tremendous recent interest and
progress in developing a theory of overparameterized machine learning that estab-
lishes foundational mathematical principles underlying these phenomena; see, e.g.,
[28, 37, 38, 48].
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 63

In this paper, we focus on a specific type of overparametrization for a class of
\ell 1-regularized optimization problems. Specifically, we consider

min
x\in \BbbR n

f(x) := h(x) + \mu \| x\| 1,(1.1)

where h \in C2(\BbbR n) and \mu > 0. This class of problems arises naturally in applications
such as compressed sensing [16, 17] and variable selections [52], where h is usually
introduced for data fidelity and can be convex or nonconvex depending on the noise
model of the data. The associated overparameterized model we consider is

min
u,v\in \BbbR n

G(u, v) := h(u \circ v) +
\mu 

2
(\| u\| 2 + \| v\| 2),(1.2)

where u \circ v is the Hadamard (entrywise) product between u and v, and \| \cdot \| denotes
the Euclidean norm. Notice that we have G(u, v) \geq f(u \circ v) for all (u, v) \in \BbbR n \times \BbbR n
and inf f = infG thanks to the AM-GM inequality. Problem (1.2) was referred to
as the Hadamard parametrization of (1.1) in the recent works [30, 45]. Hadamard
parametrization can also be viewed as a formulation of a two-layer diagonal linear
network; see the related works [9, 43, 53].

Interestingly, the function G in (1.2) is smooth, which has been exploited to design
efficient algorithms for solving (1.2); see, e.g., [30, 32, 45]. On the other hand, while
(1.1) is nonsmooth, it is known to have some desirable structural properties for the
design of efficient algorithms. Two notable features are the following:

(\frakF I) (No spurious local minimizers) When h is convex, so is f . Consequently,
any optimization methods that return stationary points of f will minimize f
when h is convex.

(\frakF II) (Explicitly known KL exponents) For a large variety of h, the function
f is known to satisfy the Kurdyka--\Lojasiewicz (KL) property with exponent
1
2 ; see, e.g., [35, 58]. The KL property is crucial for the convergence analysis
of first-order methods [3, 4, 14]. Roughly speaking, a KL exponent of 1

2
at stationary points indicates that first-order methods such as the proximal
gradient algorithm applied to (1.1) is locally linearly convergent; see, e.g.,
[2, 14, 35].

It is not clear whether features (\frakF I) and (\frakF II) are inherited by G in (1.2). Indeed,
for (\frakF I), one can easily observe that G may not be convex even when h is convex.
Fortunately, the loss of convexity in G is innocuous when h is a convex quadratic func-
tion because, in this case, it can be shown that G satisfies the so-called strict saddle
property (see [44, Appendix C]), and the gradient method with random initialization
can provably avoid strict saddle points [34, 45] and converge to second-order station-
ary points (which are global minimizers of f when h is convex quadratic; see, again,
[44, Appendix C]) under mild additional assumptions such as coercivity. However, it
is not known whether the strict saddle property holds for G for other convex h. As for
(\frakF II), to the best of our knowledge, compared with the many instances of f in (1.1)
with explicitly known KL exponents, it is not obvious how an explicit KL exponent of
G can be obtained except when h is a polynomial. Moreover, it is also unclear whether
one can estimate explicitly the KL exponent of G based on that of f to leverage the
many scenarios of f with known KL exponents. Since KL exponents are closely re-
lated to convergence rate of first-order methods, intuitively, this also suggests that
even when the local convergence rate of standard first-order methods applied to (1.1)
is known, we do not readily know the local convergence rate of first-order methods
applied to (1.2). In this paper, we study variational properties of G in (1.2) to address
the above questions concerning strict saddle property and KL exponents.
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64 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

To facilitate our discussions, we first describe an equivalent formulation of (1.2)
that can be analyzed more readily. Specifically, we apply the following invertible linear
transformation to (1.2):

a=
u+ v

2
, b=

u - v
2

.(1.3)

It is easy to verify that a \circ a - b \circ b = u \circ v. This kind of parametrization is known
as Hadamard difference parametrization (HDP) and was studied in [32, 54, 56, 55].
Using HDP, we can reformulate (1.2) equivalently as

min
a,b\in \BbbR n

F (a, b) := h(a2  - b2) + \mu 

n\sum 
i=1

(a2i + b2i )

= h(a2  - b2) + \mu \| a2  - b2\| 1 + 2\mu \| min\{ a2, b2\} \| 1,
(1.4)

where the notation a2, b2, and min\{ a2, b2\} all denote componentwise operation. Since
the invertible linear transformation (1.3) does not change the variational properties
that we will study in this paper, from now on, we will focus our discussions on F in
(1.4) instead of G in (1.2).

The specific variational properties of F in (1.4) that we study in this paper include
second-order stationarity and its KL exponent at second-order stationary points. Our
contributions can be summarized as follows:

\bullet We show that for every second-order stationary point (a\ast , b\ast ) of F , the point
s\ast := (a\ast )2  - (b\ast )2 is a stationary point of f in (1.1). Based on this, we also
provide a proof of the strict saddle property of F when h is convex, which
extends the result in [44] that studied convex quadratic h.

\bullet Under a certain strict complementarity condition, we show that if f in (1.1)
satisfies the KL property with an exponent \alpha \in (0,1) at s\ast , then F in (1.4)
satisfies the KL property with an exponent max\{ \alpha , 12\} at (a\ast , b\ast ).

\bullet When the strict complementarity condition fails, by assuming convexity of
h and an additional H\"olderian error bound condition with exponent \gamma \in 
(0,1], we show that if f in (1.1) satisfies the KL property with an exponent
\alpha \in (0,1) at s\ast , then F in (1.4) satisfies the KL property with an exponent
(1 + \beta )/2 at (a\ast , b\ast ), where \beta = 1 - \gamma (1 - \alpha ) \in (0,1). Examples are provided
to demonstrate the tightness of the exponent 1+\beta 

2 when (\gamma ,\alpha ) \in \{ 1\} \times [ 12 ,1)
or (\gamma ,\alpha )\in (0, 12 ]\times ( 1

2 ,1).
For commonly encountered convex h : \BbbR n\rightarrow \BbbR such as the least squares loss function
(i.e., h(x) = 1

2\| Ax - y\| 
2 for some A\in \BbbR m\times n and y \in \BbbR m) and the logistic loss function

(i.e., h(x) = 1
m

\sum m
i=1 log(1+e\langle yi,x\rangle ) for some yi \in \BbbR n, i= 1, . . . ,m), the aforementioned

H\"olderian error bound condition holds with exponent \gamma = 1 and the KL exponent of
the corresponding f in (1.1) is 1

2 (see, e.g., [35, Corollary 5.1]). In these cases, we can
deduce that the KL exponent of the corresponding F in (1.4) at (a\ast , b\ast ) is either 1/2
or 3/4, depending on whether the strict complementarity condition holds.

The rest of the paper is organized as follows. In section 2, we present notation
and discuss some simple properties of F in (1.4). Our studies of the second-order
stationary points of F and its strict saddle property are presented in subsection 3.1.
Results concerning the KL exponents of F at its second-order stationary points are
presented in subsection 3.2. Finally, we demonstrate in section 4 how our results in
section 3 can be used to analyze the convergence rate of a standard gradient descent
method for solving (1.4).
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 65

2. Notation and preliminaries.

2.1. Notation. In this paper, we use \BbbR n to denote the n-dimensional Euclidean
space, equipped with the standard inner product \langle \cdot , \cdot \rangle and the induced norm \| \cdot \| .
We denote the nonnegative orthant by \BbbR n+. The closed ball centered at x \in \BbbR n with
radius r is denoted by \BbbB (x, r), and the closed ball centered at the origin with radius
r is denoted by \BbbB r. We say that a set S \subseteq Q\subseteq \BbbR n has full measure on Q if Q \setminus S has
zero Lebesgue measure. If Q= \BbbR n, then we simply say that S has full measure.

For an x \in \BbbR n, we use \| x\| 1 to denote its \ell 1 norm and x2 to denote the vector
whose ith entry is x2i . Moreover, diag(x) is the diagonal matrix with x as the diagonal
vector. For x and y \in \BbbR n, we use x\circ y and min\{ x, y\} to denote their entrywise product
and minimum, respectively. Let [n] := \{ 1, . . . , n\} . For an I \subseteq [n] and an x\in \BbbR n, xI is
the subvector of x indexed by I, and we define \Pi I(x)\in \BbbR n as

[\Pi I(x)]i :=

\Biggl\{ 
xi if i\in I,
0 otherwise.

(2.1)

For a matrix A\in \BbbR n\times n and an I \subseteq [n], we use AII to denote the submatrix obtained
by extracting the rows and columns of A indexed by I. Finally, the n \times n identity
matrix is denoted by In.

For a (nonempty) closed set D\subseteq \BbbR n, its indicator function and support function
are respectively defined as

\iota D(x) =

\Biggl\{ 
0 if x\in D,
\infty otherwise,

and \sigma D(x) = sup\{ \langle x, y\rangle : y \in D\} .

In addition, we denote the distance from an x\in \BbbR n to D by dist(x,D) = infy\in D \| x - y\| ,
and the convex hull of D is denoted by conv(D). For a (nonempty) closed convex set
C \subseteq \BbbR n, we write riC to represent its relative interior. We also use PC(x) to denote
the projection of x onto C, which exists and is unique since C is nonempty, closed,
and convex. The tangent cone TC(x) for C at an x \in C is defined as the closure of\bigcup 
t>0

C - x
t , while the normal cone NC(x) is defined as NC(x) := \{ \xi \in \BbbR n : \langle \xi , y  - x\rangle \leq 

0 \forall y \in C\} . Recall that NC(x) is the polar set of TC(x). Finally, for a closed convex
cone K, we use lin(K) :=K \cap  - K to denote the linearity space of K.

For an extended-real-valued function g : \BbbR n \rightarrow \BbbR := \BbbR \cup \{ \pm \infty \} , we denote its
epigraph and domain respectively by

epig= \{ (x,\alpha )\in \BbbR n \times \BbbR : g(x)\leq \alpha \} and domg= \{ x\in \BbbR n : g(x)<\infty \} .

We call g a proper function if domg \not = \emptyset and g(x)> - \infty for all x\in \BbbR n. The function
g is said to be lower semicontinuous if epig is closed; we will also say that such a
function is closed. The function g is said to be polyhedral if epig is a polyhedral
set. We also use the notation g \in Ck(\BbbR n) to indicate that g has continuous kth order
partial derivatives on \BbbR n. We next recall the definitions of regular subdifferential\widehat \partial g(x) and (limiting) subdifferential \partial g(x) of a proper function g at an x\in domg:

\widehat \partial g(x) =

\biggl\{ 
\xi \in \BbbR n : lim inf

\~x\rightarrow x,\~x \not =x

g(\~x) - g(x) - \langle \xi , \~x - x\rangle 
\| \~x - x\| 

\geq 0

\biggr\} 
,

\partial g(x) = \{ \xi \in \BbbR n : \exists xk g\rightarrow x and \xi k \in \widehat \partial g(xk) with \xi k\rightarrow \xi \} ,
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66 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

where y
g\rightarrow x means both y\rightarrow x and g(y)\rightarrow g(x); we also set \partial g(x) = \widehat \partial g(x) = \emptyset when

x /\in domg. For a proper convex function g, the above \partial g coincides with the classical
notion of convex subdifferential, i.e., for each x\in \BbbR n, we have

\partial g(x) = \{ \xi \in \BbbR n : g(y)\geq g(x) + \langle \xi , y - x\rangle \forall y \in \BbbR n\} ;

see [47, Proposition 8.12]. Finally, for a set-valued mapping S : \BbbR n\rightrightarrows \BbbR m, we write

gphS = \{ (x,u)\in \BbbR n \times \BbbR m : u\in S(x)\} and domS = \{ x\in \BbbR n : S(x) \not = \emptyset \} 

for the graph and the domain of S, respectively.

2.2. The Kurdyka--\Lojasiewicz property. We next recall the definition of
the KL property.

Definition 2.1 (Kurdyka--\Lojasiewicz property and exponent). We say that a
proper closed function g : \BbbR n \rightarrow \BbbR \cup \{ \infty \} satisfies the KL property at \=x \in dom\partial g
if there are a \in (0,\infty ], a neighborhood V of \=x, and a continuous concave function
\varphi : [0, a)\rightarrow [0,\infty ) with \varphi (0) = 0 such that

(i) \varphi is continuously differentiable on (0, a) with \varphi \prime > 0 on (0, a);
(ii) for any x\in V with 0< g(x) - g(\=x)<a, it holds that

\varphi \prime (g(x) - g(\=x)) dist(0, \partial g(x))\geq 1.(2.2)

If g satisfies the KL property at \=x \in dom\partial g and the \varphi (s) in (2.2) can be chosen as
\=cs1 - \alpha for some \=c > 0 and \alpha \in [0,1), then we say that g satisfies the KL property at \=x
with exponent \alpha .

The KL property plays a key role in the convergence analysis of first-order meth-
ods (see [3, 4, 14]), and the exponent is closely related to the local convergence rates
of these methods (see [2]). The KL property is known to be satisfied by a large variety
of functions [3]. In particular, it is known that proper closed semialgebraic functions
satisfy the KL property with some exponent \alpha \in [0,1); see [12].

Our next remark concerns an observation on the neighborhood in Definition 2.1(ii)
and will be used in our arguments for establishing the KL property later.

Remark 2.2 (on the neighborhood requirements for (2.2)). Assume \varphi (s) = \=cs1 - \alpha 

for some \=c > 0 and \alpha \in (0,1). Then (2.2) can be equivalently written as

\=c(1 - \alpha ) dist(0, \partial g(x))\geq (g(x) - g(\=x))\alpha .(2.3)

Notice that if there exist a neighborhood V of \=x and a > 0 such that (2.3) holds
for all x \in V with dist(0, \partial g(x)) < a and 0 < g(x)  - g(\=x) < a, then, by setting
c = max\{ \=c, a\alpha  - 1/(1 - \alpha )\} and \varphi (s) = cs1 - \alpha , we know that (2.2) holds for all x \in V
with 0 < g(x)  - g(\=x) < a.1 Therefore, to verify that g satisfies the KL property
at \=x with exponent \alpha \in (0,1), it suffices to show that there exist \=c, a > 0 and a
neighborhood V of \=x such that (2.3) holds for x \in V satisfying 0 < g(x) - g(\=x) < a
and dist(0, \partial g(x))<a.

The next proposition connects the KL property with a local error bound condition
and is a direct consequence of ``(iii)\Rightarrow (i)"" in [5, Theorem 2.1]. We refer readers to
[13, 24, 27] and references therein for related studies.

1Indeed, for those x \in V satisfying dist(0, \partial g(x)) \geq a and 0 < g(x)  - g(\=x) < a, the choice of c
readily gives c(1  - \alpha ) dist(0, \partial g(x)) \geq c(1  - \alpha ) \cdot a\geq [a\alpha  - 1/(1  - \alpha )] \cdot (1  - \alpha ) \cdot a = a\alpha > (g(x)  - g(\=x))\alpha .
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 67

Proposition 2.3 ([5, Theorem 2.1]). Let g : \BbbR n\rightarrow \BbbR be a proper closed function,
and let \=x be a local minimizer of g. Let \Omega := \{ x \in \BbbR n : g(x) = g(\=x)\} . Suppose g
satisfies the KL property at \=x with exponent \alpha \in [0,1); then there exist a neighborhood

U of \=x and \sigma > 0 such that g(x) - g(\=x)\geq \sigma dist
1

1 - \alpha (x,\Omega ) for all x\in U .

2.3. Hadamard difference parametrization of \bfitf . In this subsection, we
collect some useful facts concerning F in (1.4). First, we note that the gradient and
Hessian of F are given respectively by

\nabla F (a, b) =

\biggl[ 
2a \circ \nabla h(a2  - b2) + 2\mu a
 - 2b \circ \nabla h(a2  - b2) + 2\mu b

\biggr] 
,(2.4)

\nabla 2F (a, b) = 4

\biggl[ 
diag(a)
 - diag(b)

\biggr] 
\nabla 2h(a2  - b2)

\biggl[ 
diag(a)
 - diag(b)

\biggr] \top 
+ 2

\biggl[ 
diag(\nabla h(a2  - b2)) + \mu In

 - diag(\nabla h(a2  - b2)) + \mu In

\biggr] 
.

(2.5)

This calculation directly yields the next characterization of stationary points of F .

Proposition 2.4. Let F and h be defined in (1.4) and (1.1), respectively. The
point (a, b) is a stationary point of F if and only if for each i\in [n] at least one of the
following is true:

(i) ai = bi = 0.
(ii) ai = 0, \nabla h(a2  - b2)i = \mu .

(iii) bi = 0, \nabla h(a2  - b2)i = - \mu .
We note that the equivalence between the local minima of (1.1) and (1.4) in the

sense of [32, Definition 2.2] was studied thoroughly in [32]. The next proposition
characterizes the local minimizers of (1.4) and can be derived from [39, Theorem 2]
by using the transformation in (1.3).

Proposition 2.5 (local minimizers of f and F ). For (\=a,\=b) \in \BbbR 2n, the following
statements are equivalent:

(i) The point \=a2  - \=b2 is a local minimizer of f in (1.1), and min\{ \=a2,\=b2\} = 0.
(ii) The point (\=a,\=b) is a local minimizer of F in (1.4).

We end this subsection with the following remark, where we describe in item (ii)
below an important yet simple observation (a reduction technique) that will allow us
to largely simplify our subsequent analysis.

Remark 2.6.
(i) We deduce from Proposition 2.4 that min\{ \=a2,\=b2\} = 0 at any stationary point

(\=a,\=b) of F in (1.4); see also [39, Theorem 2].
(ii) (Reduction technique). When establishing additional properties of station-

ary points that are invariant under invertible linear transformations, such as
second-order stationarity, local optimality, and the KL exponent, we will of-
ten introduce a special linear transformation to simplify the argument. We
now describe how such a linear transformation is constructed.
Let (\=a,\=b) be a stationary point of F in (1.4) and set \=s= \=a2 - \=b2 for notational
simplicity. Define the following index sets:

I1 = \{ i\in [n] : \=ai > 0\} \cup \{ i\in [n] : \=ai = \=bi = 0,\nabla h(\=s)i \not = \mu \} ,
I2 = \{ i\in [n] : \=bi > 0\} \cup \{ i\in [n] : \=ai = \=bi = 0,\nabla h(\=s)i = \mu \} ,
I3 = \{ i\in [n] : \=ai < 0\} , I4 = \{ i\in [n] : \=bi < 0\} .
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Observe from Proposition 2.4 (see also (2.4)) that \{ I1, I2, I3, I4\} forms a
partition of [n]. Next, define the following invertible linear mappings:

H(a, b) = (c, d), where (ci, di) =

\left\{         
(ai, bi) if i\in I1,
(bi, ai) if i\in I2,
( - ai, bi) if i\in I3,
( - bi, ai) if i\in I4,

P (s) = t, where ti =

\Biggl\{ 
si if i\in I1 \cup I3,
 - si if i\in I2 \cup I4.

Observe that P = P - 1. For any (a, b)\in \BbbR n\times \BbbR n, upon setting (c, d) =H(a, b),
s = a2  - b2, and t = P (s), we have from direct computation that t = c2  - d2
and

f(s) = f(P \circ P (s)) = h \circ P (t) + \mu \| t\| 1 =: \widehat f(t),

F (a, b) = F (H \circ H(a, b)) = h \circ P (c2  - d2) + \mu \| c\| 2 + \mu \| d\| 2 =: \widehat F (c, d),

which means that \widehat F can be viewed as an HDP of \widehat f .
Let (\=c, \=d) =H(\=a,\=b) and \=t= P (\=s). We see that \=c\geq 0, \=d= 0, and \nabla (h\circ P )(\=t)i =
P (\nabla h(\=s))i = - \mu whenever \=ti = 0 and \nabla (h\circ P )(\=t)i \in \{  - \mu ,\mu \} .2 By replacing f
by \widehat f and F by \widehat F if necessary, we could assume \=a\geq 0 and \=b= 0 when (\=a,\=b) is
a stationary point of F , and if further \=s= \=a2 - \=b2 is also a stationary point of
f , we could assume \nabla h(\=s)i = - \mu whenever \=si = 0 and \nabla h(\=s)i \in \{  - \mu ,\mu \} . We
will state explicitly whether we make such assumptions in our proofs below.

3. Variational properties of \bfitF from \bfitf . In this section, we analyze some
variational properties of F in (1.4). Specifically, we characterize the second-order
stationary points of F and relate them to some stationary points of f in (1.1). We
also study how the KL exponent of F at those points can be inferred from the KL
exponent of f . Since second-order stationarity and KL exponents are invariant under
invertible linear transformations, we also obtain a characterization of the second-order
stationary points of G in (1.2) and the KL exponent of G at these points.

3.1. Second-order stationary points of \bfitF . We first relate the second-order
stationary points of F in (1.4) to some stationary points of f in (1.1).

Proposition 3.1 (second-order stationary points of F ). Let f and F be defined
in (1.1) and (1.4), respectively. Then for all (a, b)\in \BbbR n\times \BbbR n, the following statements
are equivalent:

(i) The point s := a2  - b2 is a stationary point of f , min\{ a2, b2\} = 0, and
\nabla 2h(s)II \succeq 0, where I = \{ i\in [n] : si \not = 0\} .

(ii) The point (a, b) is a second-order stationary point of F .

Proof. Before proving the equivalence, we first note that an \=x \in \BbbR n being a
stationary point of f means that  - \nabla h(\=x)\in \mu \partial \| \=x\| 1, which can be expressed as follows:\Biggl\{ 

\nabla h(\=x)i = - \mu \cdot sgn(\=xi) if \=xi \not = 0,

\nabla h(\=x)i \in [ - \mu ,\mu ] if \=xi = 0.
(3.1)

2Indeed, \=ti = 0 implies \=a2i = \=b2i , which together with item (i) shows that \=ai = \=bi = 0. This
implies that i \in I1 \cup I2. Now, if \nabla (h \circ P )(\=t)i \in \{  - \mu ,\mu \} , since \nabla (h \circ P )(\=t)i = P (\nabla h(\=s))i, we must
have \nabla h(\=s)i \in \{  - \mu ,\mu \} as well. This together with i \in I1 \cup I2 and the definition of P shows that
P (\nabla h(\=s))i =  - \mu as claimed.
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 69

(i)\Rightarrow (ii): We can deduce \nabla F (a, b) = 0 from (2.4), (3.1) and the assumption
min\{ a2, b2\} = 0. We next show that \nabla 2F (a, b)\succeq 0. Since \nabla F (a, b) = 0, according to
Remark 2.6(ii), we may assume without loss of generality that a\geq 0 and b= 0.

In this case, we see that I = \{ i\in [n] : ai > 0\} . Due to the positive semidefiniteness
of \nabla 2h(s)II and since we assumed that b= 0, we can deduce that\biggl[ 

u
v

\biggr] \top \biggl[ 
diag(a)
 - diag(b)

\biggr] 
\nabla 2h(s)

\biggl[ 
diag(a)
 - diag(b)

\biggr] \top \biggl[ 
u
v

\biggr] 
= (u \circ a)\top \nabla 2h(s)(u \circ a) = (uI \circ aI)\top \nabla 2h(s)II(uI \circ aI)\geq 0 \forall (u, v)\in \BbbR n \times \BbbR n.

Furthermore, since \mu > 0, we have from (3.1) that

\pm diag(\nabla h(s)) + \mu In \succeq 0.

The above two displays together with (2.5) show that \nabla 2F (a, b)\succeq 0. This completes
the proof of (i)\Rightarrow (ii).

(ii)\Rightarrow (i): From Remark 2.6(i), we know that min\{ a2, b2\} = 0. In view of Remark
2.6(ii), we assume without loss of generality that b= 0 and a\geq 0, and then I := \{ i \in 
[n] : ai > 0\} . From (2.4) and \nabla F (a, b) = 0, we have

\nabla h(s)i = - \mu \forall i\in I.(3.2)

Thus, to show that s is a stationary point of (1.1), it suffices to prove that \nabla h(s)i \in 
[ - \mu ,\mu ] for all i /\in I. To this end, we note from \nabla 2F (a, b)\succeq 0 that

[u\top v\top ]\nabla 2F (a, b)

\biggl[ 
u
v

\biggr] 
\geq 0 \forall (u, v)\in \BbbR n \times \BbbR n.

Recall that b= 0. The above display and (2.5) imply that for all (u, v)\in \BbbR n \times \BbbR n,

2

n\sum 
i=1

\bigl[ 
(\mu +\nabla h(s)i)u

2
i + (\mu  - \nabla h(s)i)v

2
i

\bigr] 
+ 4(u \circ a)\top \nabla 2h(s)(u \circ a)\geq 0.(3.3)

By setting uI = 0 in (3.3) so that u \circ a = 0, we deduce that \nabla h(s)i \in [ - \mu ,\mu ] for all
i /\in I. This together with (3.2) shows that s is a stationary point of f .

Finally, by setting v = 0 and ui = 0 for all i /\in I in (3.3), and recalling (3.2) and
ai > 0 for all i\in I, we see further that \nabla 2h(s)II is positive semidefinite.

Next, we analyze the set of minimizers of convex composite functions. A similar
result was established in [58, Proposition 1] by assuming that h is the sum of a
composition of a locally strongly convex and Lipschitz differentiable function with a
linear mapping. The proof strategy is inspired by [41, Theorem 2.1.5]. The proof of
Lemma 3.2 can be found in Appendix A.

Lemma 3.2. Assume that \psi = g+\varphi with g,\varphi being proper closed convex functions,
g \in C2(\BbbR n), and \scrX := Arg min\psi \not = \emptyset . Then, for any x, y \in \scrX , we have \nabla g(x) =\nabla g(y).
Moreover, if we let v=\nabla g(x) for some x\in \scrX , then \scrX =\nabla g - 1(v)\cap \partial \varphi  - 1( - v).

We next present the strict saddle property of F in (1.4). If the strict saddle
property holds, then all stationary points are either local minimizers or strict saddle
points. Additionally, it has been shown that a gradient method with random initial-
ization can provably avoid strict saddle points [34, 45] and converge to second-order
stationary points under mild additional assumptions (and hence to local minimizers
when the strict saddle property holds).
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When h is convex quadratic, the function (u, v) \mapsto \rightarrow h(u \circ v) was shown to have
the strict saddle property in [57, Lemma 1], and F can be shown to have the strict
saddle property based on arguments in [44, Appendix C]. Our result here covers all
convex h.

Proposition 3.3 (strict saddle property). Let f and F be defined in (1.1) and
(1.4), respectively, and suppose that h in (1.1) is convex. Then there exists \delta > 0 such
that for all (a, b)\in \BbbR n \times \BbbR n, the following statements are equivalent:

(i) The point (a, b) is a stationary point of F and \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\nabla 2F (a, b))> - \delta .
(ii) The point a2  - b2 solves (1.1), and min\{ a2, b2\} = 0.

(iii) The point (a, b) solves (1.4).
(iv) The point (a, b) is a second-order stationary point of F .

Remark 3.4. The \delta in Proposition 3.3(i) can be chosen as in (3.5), which does not
depend on the choice of (a, b). Proposition 3.3 shows that any stationary point of F in
(1.4) is either a global minimizer or a strict saddle point with the smallest eigenvalue
of the Hessian being uniformly bounded away from 0; this uniformity was also utilized
to prove the complexity of certain perturbed gradient methods in [23, 31].

Proof. For each I \subseteq [n], we define a new function as follows:

fI(x) := f(x) + \mu \| xI\| 1 = h(x) + \mu \| x\| 1 + \mu \| xI\| 1.(3.4)

By applying Lemma 3.2, we obtain that for all x\in \Omega I := Arg minx\in \BbbR n fI(x), the gra-
dient \nabla h(x) remains the same. Specifically, we denote vI =\nabla h(x) if \Omega I is nonempty
for some x\in \Omega I . Additionally, we set

\epsilon = min\{ dist(vI , [ - \mu ,\mu ]n) : I \in \frakI \} and \delta = min

\biggl\{ 
2\mu ,

2\epsilon \surd 
n

\biggr\} 
,(3.5)

where \frakI := \{ I \subseteq [n] : \Omega I \not = \emptyset , dist(vI , [ - \mu ,\mu ]n)> 0\} .
(i)\Rightarrow (ii): The condition min\{ a2, b2\} = 0 follows from Remark 2.6(i). Let us define

s = a2  - b2. Since h is convex, to show that s solves (1.1), it suffices to show that
 - \nabla h(s)\in \mu \partial \| s\| 1.

To this end, we first consider the indices with si \not = 0 and proceed with the following
two cases:

(1) si > 0. The conditions a2i  - b2i > 0 and min\{ a2i , b2i \} = 0 imply that ai \not = 0
and bi = 0. From (2.4) and \nabla F (a, b) = 0, we have 2ai(\nabla h(s)i +\mu ) = 0, which
leads to the conclusion that  - \nabla h(s)i = \mu \in \mu \partial | si| .

(2) si < 0. The proof is similar to case (1).
In summary, we have shown that for all i\in [n] with si \not = 0, we have  - \nabla h(s)i \in \mu \partial | si| .

Now it remains to consider indices i \in [n] with si = 0. Note that si = 0 is
equivalent to ai = bi = 0, as min\{ a2i , b2i \} = 0. Next, define

\~I = \{ i\in [n] : ai = bi = 0, \nabla h(s)i /\in [ - \mu ,\mu ]\} .(3.6)

If \~I = \emptyset , then we can conclude that s solves (1.1). Thus, let's assume to the contrary
that \~I \not = \emptyset . We will consider the following two cases:

(1) Suppose that there exists some i\in \~I such that | \nabla h(s)| i > 2\mu . We first consider
the case where \nabla h(s)i <  - 2\mu . We define a(t)j = aj and b(t)j = bj for j \not = i,
and a(t)i = t and b(t)i = bi = 0. Then, we have a(t)2 - b(t)2 - (a2 - b2) = t2ei,
where ei \in \BbbR n is the vector whose ith entry is 1 and is 0 otherwise, and for
all t > 0, the following holds:
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 71

F (a(t), b(t)) - F (a, b) = h(a(t)2  - b(t)2) - h(a2  - b2) + \mu t2

= \langle \nabla h(a2  - b2), a(t)2  - b(t)2  - a2 + b2\rangle +O(t4) + \mu t2

= t2(\nabla h(a2  - b2)i + \mu ) +O(t4)\leq  - \mu t2 +O(t4).

Since \nabla F (a, b) = 0, this implies 1
2

\bigl[ 
e\top i 0

\bigr] 
\nabla 2F (a, b)[ ei0 ] \leq  - \mu , and conse-

quently, we have \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\nabla 2F (a, b))\leq  - 2\mu \leq  - \delta . This contradicts the assump-
tion that \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\nabla 2F (a, b))> - \delta .
The case where \nabla h(s)i > 2\mu can be proved similarly by defining a(t)j = aj
and b(t)j = bj for j \not = i, and a(t)i = ai = 0 and b(t)i = t.

(2) For all i \in \~I, it holds that | \nabla h(s)| i \leq 2\mu . In this case, we can verify that s
minimizes the f\~I (i.e., the fI in (3.4) with I = \~I) by examining the first-order
optimality conditions. Furthermore, we know that dist(\nabla h(s), [ - \mu ,\mu ]n) > 0
due to the assumption that \~I \not = \emptyset . Hence, by the definition of \epsilon , we obtain
that

\epsilon \leq dist(\nabla h(s), [ - \mu ,\mu ]n) =

\sqrt{} \sum 
i\in \~I

(| \nabla h(s)i|  - \mu )2 \leq 
\surd 
n

\biggl( 
max
i\in \~I
| \nabla h(s)i|  - \mu 

\biggr) 
.

Let us select \widehat i \in arg maxi\in \~I | \nabla h(s)i| . By employing a similar argument as in
case (1),3 we can show that \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\nabla 2F (a, b))\leq  - 2(| \nabla h(s)\widehat i|  - \mu )\leq  - \delta , which
contradicts the assumption that \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\nabla 2F (a, b))> - \delta .

Therefore, the \~I in (3.6) is empty and we must have that a2  - b2 solves (1.1). This
proves (i)\Rightarrow (ii). Next, by a similar argument in the proof of [39, Theorem 2], we also
have (ii)\Rightarrow (iii). Finally, the implication (iii)\Rightarrow (iv)\Rightarrow (i) is clear.

3.2. KL exponent of \bfitF at second-order stationary points. In this subsec-
tion, we study the KL exponent of F in (1.4) at second-order stationary points. Note
that these are global minimizers when h is convex according to Proposition 3.3. We
will discuss the implications of these exponents on convergence rate in section 4.

We start with an auxiliary result that characterizes the KL exponent of a class of
functions that can be represented as a sum of a C1 function and a polyhedral function.
The proof of Theorem 3.5 can be found in Appendix B.

Theorem 3.5 (KL exponent via critical cone). Assume that g \in C1(\BbbR n) and
\varphi : \BbbR n \rightarrow \BbbR \cup \{ \infty \} is a proper polyhedral function. Let \=x be a stationary point of
\psi := g+\varphi and define

K :=N\partial \varphi (\=x)( - \nabla g(\=x)), \~\psi (\cdot ) := g(\cdot ) - \langle \nabla g(\=x), \cdot  - \=x\rangle + \iota K(\cdot  - \=x),

\Omega := \{ x\in \BbbR n : \psi (x) =\psi (\=x)\} , \~\Omega := \{ x\in \BbbR n : \~\psi (x) = \~\psi (\=x)\} .

Then the following statements hold.
(i) There exists a neighborhood U of (\=x,0) such that U \cap gph\partial \psi = U \cap gph\partial \~\psi ,

and for each (x, v) \in U \cap gph\partial \psi = U \cap gph\partial \~\psi , it holds that \psi (x) - \psi (\=x) =
\~\psi (x) - \~\psi (\=x).

(ii) The function \psi satisfies the KL property at \=x with exponent \alpha \in (0,1) if and
only if \~\psi satisfies the KL property at \=x with exponent \alpha \in (0,1).

(iii) If \=x is a local minimizer of \psi , then \=x is also a local minimizer of \~\psi , and the
set \Omega locally coincides with the set \~\Omega .

3Specifically, we define a(t)j = aj and b(t)j = bj for j \not = \widehat i, and set a(t)\widehat i = t and b(t)\widehat i = 0 if
\nabla h(s)\widehat i < 0 and set a(t)\widehat i = 0 and b(t)\widehat i = t otherwise.
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Remark 3.6 (on the set K). The set K in Theorem 3.5 is actually the critical
cone of \psi at \=x [15, equation (3.220)]; indeed, it can be alternatively written as

K
(\mathrm{a})
= N\partial \psi (\=x)(0)

(\mathrm{b})
= \{ v \in \BbbR n : \sigma \partial \psi (\=x)(v) = 0\} (\mathrm{c})

= \{ v \in \BbbR n : d\psi (\=x)(v) = 0\} ,

where (a) follows from the fact that \partial \psi = \nabla g + \partial \varphi (see [47, Exercise 8.8(c)]; in
particular, \partial \psi (\=x) is a closed convex set), (b) follows from [47, Example 11.4], (c)
follows from [47, Theorem 8.30] and the regularity of \psi deduced from [47, Corol-
lary 8.19, Exercise 8.20(b), and Proposition 8.21], and the notation d\psi (\=x)(w) :=

lim inft\downarrow 0, \~w\rightarrow w
\psi (\=x+t \~w) - \psi (\=x)

t denotes the subderivative of \psi at \=x for w. Therefore,
roughly speaking, according to Theorem 3.5, to calculate the KL exponent of \psi , we
only need to check its behavior on the critical cone.

Before presenting our results on KL exponents concerning f and F in, respectively,
(1.1) and (1.4), we first derive some useful reformulations of F and \| \nabla F\| . Specifically,
let s\ast be a stationary point of f in (1.1), and define \~h(\cdot ) = h(\cdot )  - \langle \nabla h(s\ast ), \cdot  - s\ast \rangle .
Then, for any (a, b)\in \BbbR n \times \BbbR n, we can rewrite F in (1.4) as

F (a, b) = h(a2  - b2) + \mu 

n\sum 
i=1

(a2i + b2i )

= h(a2  - b2) - \langle \nabla h(s\ast ), a2  - b2\rangle +
n\sum 
i=1

\bigl[ 
(\mu +\nabla h(s\ast )i)a

2
i + (\mu  - \nabla h(s\ast )i)b

2
i

\bigr] 
= \~h(a2  - b2) - \langle \nabla h(s\ast ), s\ast \rangle +

n\sum 
i=1

\bigl[ 
(\mu +\nabla h(s\ast )i)a

2
i + (\mu  - \nabla h(s\ast )i)b

2
i

\bigr] 
.(3.7)

Next, let s= a2  - b2 and compute \nabla F (a, b) based on (3.7); we see that if we define

vi =

\biggl[ 
ai\nabla \~h(s)i + (\mu +\nabla h(s\ast )i)ai
 - bi\nabla \~h(s)i + (\mu  - \nabla h(s\ast )i)bi

\biggr] 
\forall i\in [n],(3.8)

then the first and second entries of 2vi correspond to the ith and (n+ i)th entries of
\nabla F (a, b) (i.e., \partial F

\partial ai
and \partial F

\partial bi
), respectively. Also, we have \| \nabla F (a, b)\| 2 = 4

\sum n
i=1 \| vi\| 2,

from which we deduce the existence of \delta 0 > 0 (one can choose \delta 0 = 2/
\surd 
n) such that

\| \nabla F (a, b)\| \geq \delta 0
n\sum 
i=1

\| vi\| .(3.9)

3.2.1. KL exponent under strict complementarity. The following lemma is
an immediate corollary of Theorem 3.5. Here, we assume that  - \nabla h(\=x)\in ri(\mu \partial \| \=x\| 1),
which is typically referred to as the strict complementarity condition for the f in (1.1)
at the stationary point \=x.

Lemma 3.7. Let f be defined in (1.1), \alpha \in (0,1), and \=x be a stationary point of f
with  - \nabla h(\=x) \in ri(\mu \partial \| \=x\| 1). Let \~h(\cdot ) = h(\cdot ) - \langle \nabla h(\=x), \cdot  - \=x\rangle and I = \{ i \in [n] : \=xi \not = 0\} .
Then f satisfies the KL property at \=x with exponent \alpha if and only if there exist c, r > 0
such that for all x with \| x - \=x\| < r, 0< \~h(x) - \~h(\=x)< r and xIc = \=xIc , it holds that
\| \nabla \~h(x)I\| \geq c(\~h(x) - \~h(\=x))\alpha .

Proof. Let \varphi (\cdot ) = \mu \| \cdot \| 1. We deduce from  - \nabla h(\=x)\in ri(\mu \partial \| \=x\| 1) = ri(\partial \varphi (\=x)) that

K :=N\partial \varphi (\=x)( - \nabla h(\=x)) = [aff(\partial \varphi (\=x) +\nabla h(\=x))]\bot = \{ v \in \BbbR n : vIc = 0\} .
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 73

By Theorem 3.5, f satisfies the KL property at \=x with exponent \alpha if and only if
\~h(\cdot ) + \iota K(\cdot  - \=x) does so. The rest of the statement is just the definition for the KL
property of \~h(\cdot ) + \iota K(\cdot  - \=x) at \=x with exponent \alpha .

We are now ready to present our main result in this subsection.

Theorem 3.8 (KL exponent of F under strict complementarity condition). Let
(a\ast , b\ast ) be a second-order stationary point of F in (1.4), and let s\ast = (a\ast )2  - (b\ast )2.
Assume that the function f in (1.1) satisfies the KL property at s\ast with exponent
\alpha \in (0,1). If  - \nabla h(s\ast )\in ri(\mu \partial \| s\ast \| 1), then F satisfies the KL property at (a\ast , b\ast ) with
exponent max\{ \alpha , 12\} .

Proof. We first describe the main proof idea. To prove the KL property of F at
(a\ast , b\ast ) means we need to connect \| \nabla F (a, b)\| and F (a, b) - F (a\ast , b\ast ) for appropriate
(a, b). In view of (3.9), we calculate the lower bound of each \| vi\| for i \in [n] to
give a lower bound of \| \nabla F (a, b)\| in (3.13). Then, we provide an upper bound of
F (a, b) - F (a\ast , b\ast ) as in (3.15). Finally, we use the KL property of f and Lemma 3.7
to connect the lower bound of \| \nabla F (a, b)\| and the upper bound of F (a, b) - F (a\ast , b\ast ).

We now start our proof. Since (a\ast , b\ast ) is a second-order stationary point of F , by
Proposition 3.1 we know that s\ast is a stationary point of (1.1) with min\{ (a\ast )2, (b\ast )2\} 
= 0. Following Remark 2.6(ii), we assume without loss of generality that a\ast \geq 0 and
b\ast = 0, and observe that the condition  - \nabla h(s\ast ) \in ri(\mu \partial \| s\ast \| 1) is preserved thanks to
the definition of P in Remark 2.6(ii).

Now, we proceed to define the index set I := \{ i \in [n] : a\ast i > 0\} . Since  - \nabla h(s\ast ) \in 
ri(\mu \partial \| s\ast \| 1), we know that for each i /\in I, it holds that\nabla h(s\ast )i \in ( - \mu ,\mu ). Furthermore,
let \~h(\cdot ) = h(\cdot ) - \langle \nabla h(s\ast ), \cdot  - s\ast \rangle for notational simplicity.

From Lemma 3.7 and the KL assumptions on f , we know there exists c, r > 0
such that for all x with \| x - s\ast \| < r, 0\leq \~h(x) - \~h(s\ast )< r and xIc = s\ast Ic it holds that

\| \nabla \~h(x)I\| \geq c(\~h(x) - \~h(s\ast ))\alpha .(3.10)

In addition, since a\ast I > 0, a\ast Ic = 0, b\ast = 0 and \nabla h(s\ast )i \in ( - \mu ,\mu ) for all i /\in I, by
continuity, we can find a bounded neighborhood U of (a\ast , b\ast ) to ensure that there
exists \delta > 0 such that for all (a, b)\in U , the following conditions hold:

min
i\in I

ai  - | bi| \geq \delta ,(3.11a)

min
i\in Ic
\{ \mu +\nabla h(s\ast )i, \mu  - \nabla h(s\ast )i\}  - | \nabla \~h(a2  - b2)i| \geq \delta ,(3.11b)

\~h([\Pi I(a)]2) - \~h(s\ast )< r, \| [\Pi I(a)]2  - s\ast \| < r,(3.11c)

\| aIc\| \infty \leq 1, \| b\| \infty \leq 1, \| \nabla F (a, b)\| \leq 1,(3.11d)

where \Pi I(\cdot ) is defined in (2.1). We also let L > 0 denote a Lipschitz continuity
modulus for \~h and \nabla \~h on the bounded set conv\{ a2  - b2, [\Pi I(a)]2 : (a, b)\in U\} .

Next, we derive a lower bound for
\sum n
i=1 \| vi\| (see (3.8)), which will then be used

to give a lower bound for \| \nabla F (a, b)\| on U via (3.9). To this end, we fix any (a, b)\in U
and let s= a2  - b2. We consider two cases.

(i) i \in I. Since I = \{ i \in [n] : a\ast i > 0\} and b\ast = 0, we have s\ast i = (a\ast i )
2 > 0.

Furthermore, since  - \nabla h(s\ast )i \in \mu \partial | s\ast i | , we have \nabla h(s\ast )i = - \mu . We can then
rewrite vi in (3.8) in the form

vi =

\biggl[ 
ai\nabla \~h(s)i

 - bi\nabla \~h(s)i + 2\mu bi

\biggr] 
,
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where s= a2  - b2. Thus,

2\| vi\| \geq | ai\nabla \~h(s)i| + |  - bi\nabla \~h(s)i + 2\mu bi| \geq ai| \nabla \~h(s)i|  - | bi| | \nabla \~h(s)i| + 2\mu | bi| 

= (ai  - | bi| )| \nabla \~h(s)i| + 2\mu | bi| 
(\mathrm{a})

\geq \delta | \nabla \~h(s)i| + 2\mu | bi| ,

where (a) follows from (3.11a).
(ii) i \in Ic. Notice that Ic = \{ i \in [n] : a\ast i = 0, \nabla h(s\ast )i \in ( - \mu ,\mu )\} . We then see

from (3.11b) that

2\| vi\| \geq | ai| | \nabla \~h(s)i + \mu +\nabla h(s\ast )i| + | bi| |  - \nabla \~h(s)i +(\mu  - \nabla h(s\ast )i)| \geq \delta (| ai| + | bi| ).

Summing up the displays from the above two cases for all i\in [n], we have

2

n\sum 
i=1

\| vi\| \geq \delta 1

\Biggl( \sum 
i\in I
| \nabla \~h(s)i| +

\sum 
i\in Ic
| ai| +

n\sum 
i=1

| bi| 

\Biggr) 
,(3.12)

where \delta 1 = min\{ \delta ,2\mu \} > 0. Furthermore, combining (3.9) with (3.12), we see that

\| \nabla F (a, b)\| \geq \delta 0
n\sum 
i=1

\| vi\| \geq \delta 2

\Biggl( \sum 
i\in I
| \nabla \~h(s)i| +

\sum 
i\in Ic
| ai| +

n\sum 
i=1

| bi| 

\Biggr) 
,(3.13)

where \delta 2 = 1
2\delta 0\delta 1 and s= a2  - b2.

Now, we will provide an upper bound for F (a, b) - F (a\ast , b\ast ). Fix any (a, b) \in U
with F (a, b)>F (a\ast , b\ast ) and let s= a2  - b2. Let \~s= [\Pi I(a)]2. Then we have

si  - \~si =

\Biggl\{ 
 - b2i if i\in I,
a2i  - b2i if i\in Ic.

This implies that

\| s - \~s\| \leq \| s - \~s\| 1 =
\sum 
i\in I
| b2i | +

\sum 
i\in Ic
| a2i  - b2i | \leq 

\sum 
i\in Ic

a2i +

n\sum 
i=1

b2i .(3.14)

Recall the representation of F in (3.7) and recall that b\ast = 0, we have

F (a, b) - F (a\ast , b\ast )

= \~h(s) - \~h(s\ast ) +

n\sum 
i=1

(\mu +\nabla h(s\ast )i)
\bigl( 
a2i  - (a\ast i )

2
\bigr) 

+

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{a})
= \~h(s) - \~h(\~s) + \~h(\~s) - \~h(s\ast ) +

\sum 
i\in Ic

(\mu +\nabla h(s\ast )i)a
2
i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{b})

\leq L\| s - \~s\| + \~h(\~s) - \~h(s\ast ) +
\sum 
i\in Ic

(\mu +\nabla h(s\ast )i)a
2
i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{c})

\leq \~h(\~s) - \~h(s\ast ) +
\sum 
i\in Ic

(\mu +\nabla h(s\ast )i +L)a2i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i +L)b2i

(\mathrm{d})

\leq \~h(\~s) - \~h(s\ast ) + \delta 3

\Biggl( \sum 
i\in Ic

a2i +

n\sum 
i=1

b2i

\Biggr) 
(\mathrm{e})

\leq \~h(\~s) - \~h(s\ast ) + \delta 4\| \nabla F (a, b)\| 2,(3.15)
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 75

where (a) holds because when a\ast i > 0 (i.e., i\in I), we have \mu +\nabla h(s\ast )i = 0, (b) follows
from the Lipschitz continuity of \~h with modulus L, (c) follows from (3.14), in (d) we
set \delta 3 = maxi\in [n]\{ \mu +\nabla h(s\ast )i +L, \mu  - \nabla h(s\ast )i +L\} , and (e) follows from (3.13) and

we set \delta 4 = \delta 3/\delta 
2
2 . If \~h(\~s) - \~h(s\ast )\leq 0, we see immediately from (3.15) that

F (a, b) - F (a\ast , b\ast )\leq \delta 4\| \nabla F (a, b)\| 2.(3.16)

On the other hand, if 0 < \~h(\~s) - \~h(s\ast ), then we must have 0 < \~h(\~s) - \~h(s\ast ) < r and
\| \~s  - s\ast \| < r thanks to (3.11c). Since we clearly have \~sIc = 0 = s\ast Ic , we can invoke
(3.10) to show that

\~h(\~s) - \~h(s\ast )\leq c - 
1
\alpha \| \nabla \~h(\~s)I\| 

1
\alpha \leq c - 

1
\alpha 
\bigl( 
\| \nabla \~h(s)I\| + \| \nabla \~h(s)I  - \nabla \~h(\~s)I\| 

\bigr) 1
\alpha 

(\mathrm{a})
\leq c - 

1
\alpha 
\bigl( 
\| \nabla \~h(s)I\| +L\| s - \~s\| 

\bigr) 1
\alpha 

(\mathrm{b})
\leq \delta 5

\Biggl( 
\| \nabla \~h(s)I\| +

\sum 
i\in Ic

a2i +

n\sum 
i=1

b2i

\Biggr) 1
\alpha 

\leq \delta 5

\Biggl( 
\| \nabla \~h(s)I\| 1+

\sum 
i\in Ic

a2i +

n\sum 
i=1

b2i

\Biggr) 1
\alpha 

=\delta 5

\Biggl( \sum 
i\in I

| \nabla \~h(s)i| +
\sum 
i\in Ic

a2i +

n\sum 
i=1

b2i

\Biggr) 1
\alpha 

(\mathrm{c})
\leq \delta 5

\Biggl( \sum 
i\in I

| \nabla \~h(s)i| +
\sum 
i\in Ic

| ai| +
n\sum 
i=1

| bi| 

\Biggr) 1
\alpha (\mathrm{d})

\leq \delta 6\| \nabla F (a, b)\| 
1
\alpha ,

(3.17)

where (a) follows from the Lipschitz continuity of \nabla \~h with modulus L, (b) follows

from (3.14) with \delta 5 =
\bigl( 
c - 1 max\{ L,1\} 

\bigr) 1/\alpha 
, (c) follows from (3.11d), and (d) follows

from (3.13) with \delta 6 = \delta 
 - 1/\alpha 
2 \delta 5. Combining (3.15) with (3.17), we conclude that

F (a, b) - F (a\ast , b\ast )\leq \delta 4\| \nabla F (a, b)\| 2 + \delta 6\| \nabla F (a, b)\| 1
\alpha 

(\mathrm{a})

\leq (\delta 4 + \delta 6)\| \nabla F (a, b)\| \mathrm{m}\mathrm{i}\mathrm{n}\{ 1
\alpha ,2\} ,

where in (a) we have used the fact that \| \nabla F (a, b)\| \leq 1 (see (3.11d)). This together
with (3.16) proves the KL property of F at (a\ast , b\ast ) with exponent max\{ \alpha , 12\} .

Note that F may not satisfy the KL property at (a\ast , b\ast ) with exponent max\{ \alpha , 12\} 
if strict complementarity fails and \alpha \in [ 12 ,1), as illustrated by the following example.

Example 3.9. Let x \in \BbbR , and h(x) = (1  - \alpha )| x| 
1

1 - \alpha  - x, \alpha \in [ 12 ,1) and \mu = 1
in (1.1). Then h \in C2(\BbbR ) is convex. Clearly, 0 is a global minimizer of f(\cdot ) :=
h(\cdot ) + | \cdot | . Therefore, by Proposition 3.3, we know 0 is also a global minimizer of the
corresponding F in (1.4). By Theorem 3.5, we know that the KL exponent of f at 0

coincides with the KL exponent of \~f := \~h+ \iota K at 0, where \~h(x) = (1 - \alpha )| x| 
1

1 - \alpha and
K =N\partial | 0| ( - \nabla h(0)) = \BbbR +. By direct calculation, we can see the KL exponent of \~f at
0 is \alpha . On the other hand, we have

F (a, b) = h(a2  - b2) + a2 + b2 = (1 - \alpha )| a2  - b2| 
1

1 - \alpha + 2b2.

Take t > 0. Then we have \nabla F (t,0) = [ 2t
1+\alpha 
1 - \alpha 0 ]\top and F (t,0) = (1  - \alpha )t

2
1 - \alpha . This

implies that \| \nabla F (t,0)\| = 2( 1
1 - \alpha F (t,0))

1+\alpha 
2 , which shows that the KL exponent of F

at 0 is no less than 1+\alpha 
2 .

3.2.2. KL exponent in the absence of strict complementarity. In this
subsection, by imposing additional assumptions on h in (1.1), we investigate how the
KL exponent of F in (1.4) at its second-order stationary points can be inferred from
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76 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

the KL exponent of f in (1.1) when the strict complementarity condition fails. Our
main tool is the following technical lemma. The proof of Lemma 3.10 can be found
in Appendix C.

Lemma 3.10. Suppose that g \in C2(\BbbR n) is convex and \=x \in \BbbR n. Define \psi (\cdot ) =
g(\cdot ) + \iota K(\cdot  - \=x), where K is a nonempty closed convex set, and assume that \=x is a
global minimizer of \psi . Let \Omega := Arg min\psi . Fix a partition J1, J2, J3 of [n]. Assume
that

(i) there exist a neighborhood U of \=x and constants c > 0, \gamma \in (0,1] such that for
all \rho \in \BbbR J3+ , it holds that

dist(x,\Omega \cap S\rho )\leq cmax\{ dist(x,\Omega ),dist(x,S\rho )\} \gamma \forall x\in U \cap (\=x+K),(3.18)

where S\rho := \{ x\in \BbbR n : | xi  - \=xi| \leq \rho i \forall i\in J3\} ;
(ii) for all x\in \=x+K and i\in J1, it holds that xi = \=xi.

Suppose that \psi satisfies the KL property at \=x with exponent \alpha \in (0,1). Then, by
shrinking U if necessary, there is a constant \sigma > 0 such that\sum 

i\in J2

| \nabla g(x)i| 2 +
\sum 
i\in J3

| xi  - \=xi| | \nabla g(x)i| 2 \geq \sigma (g(x) - g(\=x))1+\beta \forall x\in U \cap (\=x+K),

where \beta = 1 - \gamma (1 - \alpha )\in (0,1).

Before presenting the main result in this subsection, we first introduce some no-
tation. Let s\ast be a stationary point of (1.1). We define the following index sets:

J1 = \{ i\in [n] : s\ast i = 0, \nabla h(s\ast )i \in ( - \mu ,\mu )\} ,
J2 = \{ i\in [n] : s\ast i \not = 0, \nabla h(s\ast )i \in \{  - \mu ,\mu \} \} ,
J3,1 = \{ i\in [n] : s\ast i = 0, \nabla h(s\ast )i = - \mu \} ,
J3,2 = \{ i\in [n] : s\ast i = 0, \nabla h(s\ast )i = \mu \} ,
J3 = J3,1 \cup J3,2.

(3.19)

K :=N\mu \partial \| s\ast \| 1
( - \nabla h(s\ast )) =

\prod 
i\in [n]

Ki, where Ki =

\left\{         
\{ 0\} , i\in J1,
\BbbR , i\in J2,
\BbbR +, i\in J3,1,
\BbbR  - , i\in J3,2.

(3.20)

One can check readily that for all x \in s\ast +K, we have xi = s\ast i for i \in J1. Next, we
present the result concerning the KL exponent F in (1.4) based on the KL exponent
of f by assuming the convexity of h in (1.1) and an additional error bound condition
(3.21).

Theorem 3.11 (KL exponent of F in the absence of strict complementarity). Let
(a\ast , b\ast ) be a second-order stationary point of F in (1.4) and assume that h in (1.1) is
convex. Define s\ast = (a\ast )2 - (b\ast )2 and \Omega = \{ x\in \BbbR n : f(x) = f(s\ast )\} , where f is defined
in (1.1). Let J1, J2, J3, and K be defined in (3.19) and (3.20), respectively. Suppose
that there exist a neighborhood V of s\ast and constants c > 0, \gamma \in (0,1] such that for all
\rho \in \BbbR J3+ , it holds that

dist(x,\Omega \cap S\rho )\leq cmax\{ dist(x,\Omega ),dist(x,S\rho )\} \gamma \forall x\in V \cap (s\ast +K),(3.21)
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 77

where S\rho := \{ x \in \BbbR n : | xi  - s\ast i | \leq \rho i \forall i \in J3\} . Suppose also that f satisfies the KL
property at s\ast with exponent \alpha \in (0,1). Then F satisfies the KL property at (a\ast , b\ast )
with exponent 1+\beta 

2 , where \beta = 1 - \gamma (1 - \alpha )\in (0,1).

Remark 3.12 (comments on (3.21)). Notice that s\ast \in \Omega \cap S\rho for all \rho \in \BbbR J3+ ,
which implies that \Omega \cap S\rho \not = \emptyset . By the Hoffman's error bound, condition (3.21) holds
with \gamma = 1 if \Omega is polyhedral; see [26, Lemma 3.2.3]. Since s\ast \in Arg minf (thanks to
Proposition 3.3 and the assumptions that h is convex and (a\ast , b\ast ) is a second-order
stationary point), we know that \Omega (= Arg minf) is polyhedral if h(x) = g(Ax)+\langle c,x\rangle ,
where g : \BbbR m\rightarrow \BbbR is a Lipschitz differentiable locally strongly convex function, c\in \BbbR n
and A\in \BbbR m\times n; see [58, section 4.2]. This covers the commonly used least squares loss
function (i.e., h(x) = 1

2\| Ax - y\| 
2 for some A \in \BbbR m\times n and y \in \BbbR m) and logistic loss

function (i.e., h(x) = 1
m

\sum m
i=1 log(1 + e\langle yi,x\rangle ) for some yi \in \BbbR n, i= 1, . . . ,m).

Proof. The overall proof strategy is similar to that of Theorem 3.8. Instead of
using Lemma 3.7, here, we use Lemma 3.10 to connect the lower bound of \| \nabla F (a, b)\| 
and the upper bound of F (a, b) - F (a\ast , b\ast ).

We now start the proof. Since (a\ast , b\ast ) is a second-order stationary point of F
and h is convex, we have from Proposition 3.3 that s\ast is a global minimizer of (1.1),
min\{ (a\ast )2, (b\ast )2\} = 0, and  - \nabla h(s\ast ) \in \mu \partial \| s\ast \| 1. In view of Remark 2.6(ii), we may
assume without loss of generality that a\ast \geq 0, b\ast = 0, and \nabla h(s\ast )i =  - \mu whenever
s\ast i = 0 and \nabla h(s\ast )i \in \{  - \mu ,\mu \} (hence, J3,2 = \emptyset ). We can then rewrite the index sets
in (3.19) as follows:

J1 = \{ i\in [n] : a\ast i = 0, \nabla h(s\ast )i \in ( - \mu ,\mu )\} ,
J2 = \{ i\in [n] : a\ast i > 0, \nabla h(s\ast )i = - \mu \} ,
J3 = \{ i\in [n] : a\ast i = 0, \nabla h(s\ast )i = - \mu \} ,

(3.22)

and observe that (3.21) holds for the above index sets and the K in (3.20) (with
J3,2 = \emptyset ) thanks to the definition of P in Remark 2.6(ii).

Next, let \~h(\cdot ) = h(\cdot ) - \langle \nabla h(s\ast ), \cdot  - s\ast \rangle . According to Theorem 3.5, we know that
\~f(\cdot ) := \~h(\cdot )+ \iota K(\cdot  - s\ast ) satisfies the KL property at s\ast with exponent \alpha , and \Omega locally
agrees with Arg min \~f . This together with (3.21) shows that condition (i) in Lemma
3.10 holds with \psi = \~f and J1, J2, and J3 as in (3.22). In addition, condition (ii) in
Lemma 3.10 follows from (3.22) and the definition of Ki in (3.20) (with J3,2 = \emptyset ).
We can now apply Lemma 3.10 with (\psi ,g) = ( \~f,\~h) and J1, J2, J3, and K defined in
(3.22) and (3.20) (with J3,2 = \emptyset ), respectively, to deduce the existence of a constant
\sigma > 0 and a bounded neighborhood V1 of s\ast such that

\sum 
i\in J2

| \nabla \~h(x)i| 2 +
\sum 
i\in J3

| xi  - s\ast i | | \nabla \~h(x)i| 2\geq \sigma (\~h(x) - \~h(s\ast ))1+\beta \forall x\in V1 \cap (s\ast +K).

(3.23)

Now, in view of (3.22) and utilizing continuity, we can take a sufficiently small
neighborhood U of (a\ast , b\ast ) to ensure that there exists \delta > 0 such that for all (a, b)\in U ,
the following holds:

min
i\in J1
\{ \mu +\nabla h(s\ast )i, \mu  - \nabla h(s\ast )i\}  - | \nabla \~h(a2  - b2)i| \geq \delta ,(3.24a)

min
i\in J2

ai  - | bi| \geq \delta ,(3.24b)

min
i\in J3

2\mu  - | \nabla \~h(a2  - b2)i| \geq \delta ,(3.24c)
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\| aJc
2
\| \infty \leq 1, \| b\| \infty \leq 1,(3.24d)

[\Pi Jc
1
(a)]2 \in V1, a2  - b2 \in V1,(3.24e)

where \Pi Jc
1

is defined as in (2.1).
We now consider three cases, i \in J1, i \in J2, and i \in J3, to provide a lower bound

for
\sum n
i=1 \| vi\| over U , where vi is given in (3.8). To this end, fix any (a, b) \in U and

let s= a2  - b2. We then proceed with the three cases.
(i) i\in J1. We see from (3.24a) and (3.8) that

2\| vi\| \geq | ai| | \nabla \~h(s)i + \mu +\nabla h(s\ast )i| + | bi| |  - \nabla \~h(s)i + (\mu  - \nabla h(s\ast )i)| 
\geq \delta (| ai| + | bi| ).

(ii) i \in J2. From (3.22), we see that s\ast i = (a\ast i )
2 > 0 and \nabla h(s\ast )i =  - \mu . We can

then rewrite vi in (3.8) as

vi =

\biggl[ 
ai\nabla \~h(s)i

 - bi\nabla \~h(s)i + 2\mu bi

\biggr] 
.

Thus,

2\| vi\| \geq | ai\nabla \~h(s)i| + |  - bi\nabla \~h(s)i + 2\mu bi| \geq ai| \nabla \~h(s)i|  - | bi| | \nabla \~h(s)i| + 2\mu | bi| 

= (ai  - | bi| )| \nabla \~h(s)i| + 2\mu | bi| 
(\mathrm{a})

\geq \delta | \nabla \~h(s)i| + 2\mu | bi| ,

where (a) follows from (3.24b).
(iii) i\in J3. We have from (3.24c) and (3.8) that

2\| vi\| \geq | ai| | \nabla \~h(s)i| + | bi| (2\mu  - | \nabla \~h(s)i| )\geq | ai| | \nabla \~h(s)i| + \delta | bi| .

Summing up the displays from the above three cases for all i\in [n], we have

2

n\sum 
i=1

\| vi\| \geq \delta 1

\Biggl( \sum 
i\in J1

| ai| +
\sum 
i\in J2

| \nabla \~h(s)i| +
\sum 
i\in J3

| ai| | \nabla \~h(s)i| +
n\sum 
i=1

| bi| 

\Biggr) 
,(3.25)

where \delta 1 = min\{ \delta ,1,2\mu \} . Now, combining (3.9) with (3.25), we readily derive a lower
bound for \| \nabla F (a, b)\| as follows:

\| \nabla F (a, b)\| \geq \delta 0
n\sum 
i=1

\| vi\| 

(\mathrm{a})

\geq \delta 2

\Biggl( \sum 
i\in J1

| ai| +
\sum 
i\in J2

| \nabla \~h(s)i| +
\sum 
i\in J3

| ai| | \nabla \~h(s)i| +
n\sum 
i=1

| bi| 

\Biggr) 

\geq \delta 2

\sqrt{}    \sum 
i\in J1

| ai| 2 +
\sum 
i\in J2

| \nabla \~h(s)i| 2 +
\sum 
i\in J3

| ai| 2| \nabla \~h(s)i| 2 +

n\sum 
i=1

| bi| 2(3.26)

(\mathrm{b})

\geq \delta 2

\sqrt{}    \sum 
i\in J1

| ai| 2(1+\beta ) +
\sum 
i\in J2

| \nabla \~h(s)i| 2 +
\sum 
i\in J3

| ai| 2| \nabla \~h(s)i| 2 +

n\sum 
i=1

| bi| 2(1+\beta ),(3.27)

where (a) holds with \delta 2 = 1
2\delta 0\delta 1, and (b) follows from (3.24d).
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 79

Next, we will derive an upper bound for F (a, b) - F (a\ast , b\ast ). Fix any (a, b) \in U
with F (a, b)>F (a\ast , b\ast ). Define s= a2 - b2 and \~s= [\Pi Jc

1
(a)]2, where \Pi Jc

1
(\cdot ) is defined

as in (2.1). Then we have

si  - \~si =

\Biggl\{ 
a2i  - b2i , i\in J1,
 - b2i , i\in J2 \cup J3,

\| s - \~s\| 2 =
\sum 
i\in J1

(a2i  - b2i )2 +
\sum 

i\in J2\cup J3

b4i .(3.28)

This implies that

\| s - \~s\| \leq \| s - \~s\| 1 =
\sum 
i\in J1

| a2i  - b2i | +
\sum 

i\in J2\cup J3

|  - b2i | \leq 
\sum 
i\in J1

a2i +

n\sum 
i=1

b2i .(3.29)

Let L denote the Lipschitz continuity modulus of both \nabla \~h and \~h on the bounded
neighborhood conv(V1), where V1 is defined as in (3.23). Using the representation of
F in (3.7) (and recalling that b\ast = 0), we have

F (a, b) - F (a\ast , b\ast )

= \~h(s) - \~h(s\ast ) +

n\sum 
i=1

(\mu +\nabla h(s\ast )i)
\bigl( 
a2i  - (a\ast i )

2
\bigr) 

+

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{a})
= \~h(s) - \~h(\~s) + \~h(\~s) - \~h(s\ast ) +

n\sum 
i=1

(\mu +\nabla h(s\ast )i)a
2
i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{b})
= \~h(s) - \~h(\~s) + \~h(\~s) - \~h(s\ast ) +

\sum 
i\in J1

(\mu +\nabla h(s\ast )i)a
2
i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{c})

\leq L\| s - \~s\| + \~h(\~s) - \~h(s\ast ) +
\sum 
i\in J1

(\mu +\nabla h(s\ast )i)a
2
i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i)b
2
i

(\mathrm{d})

\leq \~h(\~s) - \~h(s\ast ) +
\sum 
i\in J1

(\mu +\nabla h(s\ast )i +L)a2i +

n\sum 
i=1

(\mu  - \nabla h(s\ast )i +L)b2i(3.30)

(\mathrm{e})

\leq \~h(\~s) - \~h(s\ast ) + \delta 3\| \nabla F (a, b)\| 2,(3.31)

where (a) holds because a\ast i > 0 implies \mu +\nabla h(s\ast )i = 0 (see (3.22)), (b) holds because
\mu +\nabla h(s\ast )i = 0 except when i\in J1, (c) follows from the Lipschitz continuity of \~h on
conv(V1) with modulus L and (3.24e) (so that s and \~s\in V1), (d) follows from (3.29),
(e) follows from (3.26), and we set \delta 3 = \delta  - 2

2 \cdot maxi\in [n]\{ \mu +\nabla h(s\ast )i+L,\mu  - \nabla h(s\ast )i+L\} .
Now, if \~h(\~s) - \~h(s\ast )\leq 0, we see from (3.31) that

F (a, b) - F (a\ast , b\ast )\leq \delta 3\| \nabla F (a, b)\| 2.(3.32)

Otherwise, using the Lipschitz continuity of \nabla \~h on conv(V1), (3.23), (3.24e) (so that
s and \~s\in V1) and noting that \~s\in s\ast +K, we have

\sigma 
\Bigl( 

\~h(\~s) - \~h(s\ast )
\Bigr) 1+\beta 

\leq 
\sum 
i\in J2

| \nabla \~h(\~s)i| 2 +
\sum 
i\in J3

| \~si  - s\ast i | | \nabla \~h(\~s)i| 2

(\mathrm{a})
=
\sum 
i\in J2

| \nabla \~h(\~s)i  - \nabla \~h(s)i +\nabla \~h(s)i| 2 +
\sum 
i\in J3

a2i | \nabla \~h(\~s)i  - \nabla \~h(s)i +\nabla \~h(s)i| 2
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80 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

(\mathrm{b})

\leq 2
\sum 
i\in J2

(| \nabla \~h(s)i| 2+| \nabla \~h(s)i - \nabla \~h(\~s)i| 2)+2
\sum 
i\in J3

a2i (| \nabla \~h(s)i| 2+| \nabla \~h(s)i - \nabla \~h(\~s)i| 2)

(\mathrm{c})

\leq 2
\sum 
i\in J2

| \nabla \~h(s)i| 2+2
\sum 
i\in J3

a2i | \nabla \~h(s)i| 2+2L2
\sum 
i\in J2

\| si  - \~si\| 2+2L2
\sum 
i\in J3

a2i \| si  - \~si\| 2

(\mathrm{d})

\leq 2
\sum 
i\in J2

| \nabla \~h(s)i| 2 + 2
\sum 
i\in J3

a2i | \nabla \~h(s)i| 2 + 2L2\| s - \~s\| 2

(\mathrm{e})

\leq 2
\sum 
i\in J2

| \nabla \~h(s)i| 2 + 2
\sum 
i\in J3

a2i | \nabla \~h(s)i| 2 + 4L2

\Biggl( \sum 
i\in J1

a4i +

n\sum 
i=1

b4i

\Biggr) 
,(3.33)

where (a) follows from \~si  - s\ast i = a2i for i \in J3, (b) holds because of the fact that
(x + y)2 \leq 2x2 + 2y2 for all x, y \in \BbbR , (c) follows from the Lipschitz continuity of
\nabla \~h, (d) follows from (3.24d) (so that | ai| \leq 1 for i \in Jc2), and (e) follows from the
second relation in (3.28) and we have used the inequality (x+ y)2 \leq 2x2 + 2y2 again.
Consequently, using the convexity of | \cdot | 1+\beta and (3.30), we deduce that there is a
\delta 4 > 0 which is independent of (a, b)\in U such that

(F (a, b) - F (a\ast , b\ast ))
1+\beta \leq \delta 4

\Biggl( \Bigl( 
\~h(\~s) - \~h(s\ast )

\Bigr) 1+\beta 
+
\sum 
i\in J1

| ai| 2(1+\beta ) +

n\sum 
i=1

| bi| 2(1+\beta )
\Biggr) 

(\mathrm{a})

\leq \delta 5

\Biggl( \sum 
i\in J2

| \nabla \~h(s)i| 2+
\sum 
i\in J3

a2i | \nabla \~h(s)i| 2+
\sum 
i\in J1

a4i +

n\sum 
i=1

b4i +
\sum 
i\in J1

| ai| 2(1+\beta )+
n\sum 
i=1

| bi| 2(1+\beta )
\Biggr) 

(\mathrm{b})

\leq 2\delta 5

\Biggl( \sum 
i\in J1

| ai| 2(1+\beta )+
\sum 
i\in J2

| \nabla \~h(s)i| 2+
\sum 
i\in J3

a2i | \nabla \~h(s)i| 2+
n\sum 
i=1

| bi| 2(1+\beta )
\Biggr) 

(\mathrm{c})

\leq \delta 6\| \nabla F (a, b)\| 2,

where (a) follows from (3.33) and we set \delta 5 = \delta 4 max\{ 1, \sigma  - 1 max\{ 2,4L2\} \} , (b) follows
from (3.24d), and (c) follows from (3.27) by setting \delta 6 = 2\delta  - 2

2 \delta 5. This together with
(3.32) implies that F satisfies the KL property at (a\ast , b\ast ) with exponent 1+\beta 

2 .

Remark 3.13 (tightness of the exponent 1+\beta 
2 in Theorem 3.11). When \gamma = 1,

the constant \beta given in Theorem 3.11 becomes \alpha . Therefore, under the settings of
Theorem 3.11, the function F satisfies the KL property at the second-order stationary
point with exponent 1+\alpha 

2 , which happens to be the exponent given in Example 3.9.
Moreover, the set of minimizers in Example 3.9 is a singleton, so the error bound
condition (3.21) holds with \gamma = 1 by Remark 3.12. Consequently, the exponent given
in Theorem 3.11 is tight when \gamma = 1 and \alpha \in [ 12 ,1). A more complex example, which
shows that this exponent is tight when \alpha \in ( 1

2 ,1) and \gamma \in (0, 12 ], can be found in
Appendix D.

Remark 3.14 (explicit KL exponent). When h is the least squares loss function
or the logistic loss function as described in Remark 3.12, the KL exponent of the
corresponding f in (1.1) is 1

2 (see [35, Corollary 5.1]). In these cases, by Theorem
3.8, Theorem 3.11, and Remark 3.12, we can deduce that the KL exponent of the
corresponding F in (1.4) at a second-order stationary point (a\ast , b\ast ) is either 1/2 or
3/4, depending on whether  - \nabla h(s\ast )\in ri(\mu \partial \| s\ast \| 1), where s\ast = (a\ast )2  - (b\ast )2.
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 81

Algorithm 4.1 Gradient descent with backtracking linesearch.

Require: Initial (a0, b0)\in \BbbR n \times \BbbR n, initial stepsize \theta 0 \in (0,\infty ), \kappa \in (0,1).
\theta = \theta 0
for k= 0,1, . . . do

(ak+1, bk+1) = (ak, bk) - \theta \nabla F (ak, bk)

while F (ak+1, bk+1)>F (ak, bk) - \theta 2

2 \| \nabla F (ak, bk)\| 2 do
\theta \leftarrow \kappa \theta 
(ak+1, bk+1) = (ak, bk) - \theta \nabla F (ak, bk)

end while
end for

4. Convergence analysis of a first-order method. To highlight the conse-
quences of our results in section 3, we analyze the convergence rate of a standard
first-order method applied to minimizing F in (1.4), where we incorporate a stan-
dard linesearch scheme to adaptively estimate the ``local"" Lipschitz constant of \nabla F ;
see Algorithm 4.1. We will argue that, under some reasonable assumptions, with
almost every initial point and initial stepsize, the sequence generated by Algorithm
4.1 converges to a second-order stationary point and the convergence rate can then
be deduced based on the KL exponent of f in (1.1), according to Theorems 3.8 and
3.11. The reduction to the KL exponents of f is important because the explicit KL
exponents of functions of the form f have been identified for a large variety of convex
h that arise in contemporary applications (see, e.g., [58, 13, 24, 35]), while not much
is known concerning the explicit KL exponents of the corresponding F .

We first present our assumption. (A1) is inspired by [19, Assumption 2.1].

Assumption 4.1. Let F be defined in (1.4) and consider Algorithm 4.1. Let
\Gamma = \{ \kappa k\theta 0 : k \in \BbbN \} , and define \scrG \theta (a, b) := (a, b) - \theta \nabla F (a, b). We assume that

(A1) for each \theta \in \Gamma , there exists an open set U\theta \subseteq \BbbR 2n, whose complement has zero
Lebesgue measure, and det(D\scrG \theta ) is nonzero on U\theta ;

4

(A2) the function F is level bounded;
(A3) the function F satisfies the KL property at each of its stationary point.

Under the above assumption, we will show that Algorithm 4.1 can converge to
a second-order stationary point of F in some almost sure sense. Let us first justify
these assumptions. We note that (A2) holds if h is lower bounded, in which case F is
the sum of a level bounded function and a lower bounded function, and hence is level
bounded. (A3) is a standard assumption in the convergence analysis of the first-order
method; see, e.g., [3, 4, 14]. For (A1), we will show it holds if F is subanalytic: this
covers the cases when h is the least squares loss function or the logistic loss function
as described in Remark 3.12, and most other practical loss functions. The definition
of subanalytic sets and functions is taken from [49, p. 40] and is equivalent to the
projection definition of semianalytic sets due to [29]; see, e.g., [10, Proposition 3.13].

Definition 4.2. A set X \subseteq \BbbR n is said to be subanalytic if for each x\in \BbbR n, there
exists a neighborhood U of x such that the set U \cap X can be written as finite union of
sets in the form Im(f1) - Im(f2),5 where f1 and f2 are topologically proper (i.e., the
preimage of a compact set is compact), and real analytic from real analytic manifolds
to \BbbR n. A mapping \psi : \BbbR n\rightarrow \BbbR m is said to be subanalytic if gph(\psi ) is subanalytic.

4Here, D\scrG \theta is the Jacobian of \scrG \theta .
5Here, Im(f) is the image of the function f .
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82 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

The proof of the next proposition is inspired by [19, Lemma 5.2].

Proposition 4.3. Suppose that F in (1.4) is a subanalytic function. Then, there
exists a full measure set \Theta \subseteq \BbbR ++ on \BbbR ++ such that if \theta 0 \in \Theta , then (A1) holds.

Proof. Define \scrH : \BbbR n \times \BbbR n \times \BbbR \rightarrow \BbbR as \scrH (a, b, \theta ) := det(I2n  - \theta \nabla 2F (a, b)) =
det(D\scrG \theta (a, b)). Now, we identify \BbbR n \times \BbbR n \times \BbbR as \BbbR 2n+1 with the usual Lebesgue
measure and Euclidean topology. Since F is subanalytic and F \in C2(\BbbR n), we know
each component of \nabla 2F is subanalytic by [49, (I.2.1.13)], and hence \scrH is subanalytic
by [49, (I.2.1.9)] and the product form of determinant. Therefore, the set Z :=\scrH  - 1\{ 0\} 
is closed by the continuity of \scrH and also subanalytic by [49, (I.2.1.4)]. Applying [49,
Lemma I.2.2], we see that Z can be represented as disjoint union of C2 submanifolds6

\{ Xi\} i\in J of \BbbR 2n+1, where J is an index set, and \{ Xi\} i\in J is locally finite at each x\in Z
in the sense that there is a neighborhood U of x such that only finitely many sets
in \{ U \cap Xi\} i\in J are nonempty. Since \BbbR 2n+1 is second countable, we know J is at
most countable. Next, we note that for each (a, b) \in \BbbR n \times \BbbR n, only finitely many
\theta \in \BbbR satisfy that \scrH (a, b, \theta ) = 0. This means that Z does not contain any open set
in \BbbR 2n+1, and hence for all i \in J it holds that dim(Xi) < 2n+ 1; see [33, Theorem
1.21]. According to [33, Proposition 1.38], we know each Xi with i \in J has measure
zero in \BbbR 2n+1, and hence Z =\cup i\in JXi has measure zero in \BbbR 2n+1. By [50, Chapter 2,
Corollary 3.3], we know that there exists a full measure set Q\subseteq \BbbR such that for each
\theta \in Q, the set Z\theta := \{ (a, b)\in \BbbR n\times \BbbR n : (a, b, \theta )\in Z\} has zero measure and is closed as
a slice of the closed set Z. Therefore, it suffices to take \Theta =

\bigl( 
\cap \infty k=0Q/\kappa 

k
\bigr) 
\cap \BbbR ++.

Theorem 4.4. Suppose that Assumption 4.1 holds. Then there exists a subset
V \subseteq \BbbR 2n, whose complement has zero Lebesgue measure, such that if (a0, b0) \in V ,
then the sequence \{ (ak, bk)\} generated by Algorithm 4.1 converges to a second-order
stationary point (a\ast , b\ast ) of F in (1.4). Moreover, in this case, denote s\ast = (a\ast )2 - (b\ast )2

and assume in addition that f in (1.1) satisfies the KL property at s\ast with exponent
\alpha \in (0,1). Then the following statements hold.

(i) If  - \nabla h(x\ast )\in ri(\mu \partial \| s\ast \| 1), then \| (ak, bk) - (a\ast , b\ast )\| =O(k - 
1 - \alpha 
2\alpha  - 1 ) if \alpha \in ( 1

2 ,1),
and \| (ak, bk) - (a\ast , b\ast )\| =O(ck) for some c\in (0,1) if \alpha \in (0, 12 ].

(ii) If h is convex and the conditions in Theorem 3.11 are all satisfied, then it holds

that \| (ak, bk) - (a\ast , b\ast )\| =O(k - 
1 - \beta 
2\beta ), where \beta is defined in Theorem 3.11.

Proof. Since F is level bounded and \{ F (ak, bk)\} is nonincreasing, we see that
\{ (ak, bk)\} lies in the bounded set \{ (a, b) \in \BbbR n \times \BbbR n : F (a, b)\leq F (a0, b0)\} . Therefore,
the stepsize \theta in Algorithm 4.1 would remain constant eventually; see the proof of
[18, Proposition A.1(ii)]. The result about the global convergence to a stationary
point now follows from (A3) of Assumption 4.1 and standard arguments as in [4]. In
addition, the convergence rate result will follow (from, e.g., [2]) once (a\ast , b\ast ) is shown
to be a second-order stationary point so that the KL exponent of F at (a\ast , b\ast ) can be
inferred from that of f at s\ast according to subsections 3.2 and 3.2.2. In other words,
now it suffices to argue for the existence of the set V .

To this end, let A be defined as the set of all the strict saddle points of F .
For each \theta \in \Gamma defined in Assumption 4.1, we define the set B\theta := \{ (a, b) \in \BbbR 2n :

6We apply this lemma with A\nu \equiv \BbbR 2n+1 to obtain a Whitney stratification \{ Xi\} i\in J of Z; see
[49, p. 4] for the definition of Whitney stratification.
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 83

limk\rightarrow \infty \scrG k\theta ((a, b)) \in A\} . Applying [19, Proposition 2.5],7 we know B\theta has measure
zero for each \theta \in \Gamma . Therefore, the set B :=\cup \theta \in \Gamma B\theta also has measure zero. Let Q be
the set consisting of all finite sequences of elements in \Gamma . According to the argument in
[21, Theorem 2.1-1], we know Q is also countable. Since the stepsize \theta in Algorithm 4.1
would only change finitely many times, we have\biggl\{ 

(a0, b0) : lim
k\rightarrow \infty 

(ak, bk)\in A
\biggr\} 
\subseteq 

\bigcup 
(\theta 1,...,\theta r)\in Q

\scrG  - 1
\theta 1
\circ \cdot \cdot \cdot \circ \scrG  - 1

\theta r
(B),

where the right-hand side has measure zero as countable union of measure zero
sets: sets of the form \scrG  - 1

\theta 1
\circ \cdot \cdot \cdot \circ \scrG  - 1

\theta r
(B) have zero Lebesgue measures thanks to

(A1) and [19, Lemma 2.4]. Therefore, it suffices to take V = [
\bigcup 

(\theta 1,...,\theta r)\in Q \scrG 
 - 1
\theta 1
\circ . . .

\circ \scrG  - 1
\theta r

(B)]c.

Corollary 4.5. Assume that h in (1.1) is subanalytic and lower bounded, and
the initial stepsize \theta 0 and the initial point (a0, b0) in Algorithm 4.1 are chosen indepen-
dently according to distributions whose cumulative distribution functions (regarded as
probability measures) are absolutely continuous with respect to the Lebesgue measures
on \BbbR ++ and \BbbR n \times \BbbR n, respectively. Then, with probability 1, the sequence \{ (ak, bk)\} 
generated by Algorithm 4.1 converges to a second-order stationary point (a\ast , b\ast ) of F
in (1.4). Moreover, in this case, denote s\ast = (a\ast )2  - (b\ast )2 and assume in addition
that f in (1.1) satisfies the KL property at s\ast with exponent \alpha \in (0,1). Then the
convergence rate of \{ (ak, bk)\} follows the rate given in Theorem 4.4.

Proof. In view of Proposition 4.3, Theorem 4.4, and [11], it suffices to verify that
F is subanalytic, which follows from [49, (I.2.1.9) and (I.2.1.10)].

Appendix A. Proof of Lemma 3.2.

Proof. Fix any x, y \in \scrX . Since g \in C2(\BbbR n), we can assume that \nabla g is Lipschitz
continuous with a modulus of L\prime on a bounded open convex neighborhood of the line
segment [x, y]. We choose L > L\prime to be sufficiently large so that this neighborhood
contains y - 1

L (\nabla g(y) - \nabla g(x)).
Let \phi (z) = g(z)  - \langle \nabla g(x), z\rangle . By the first-order optimality condition, we know

that x\in Arg minz\in \BbbR n \phi (z). In particular, \phi (x)\leq \phi (y - 1
L\nabla \phi (y)). Applying the descent

lemma, we deduce that \phi (x)\leq \phi (y) - 1
2L\| \nabla \phi (y)\| 2. Since \phi (z) = g(z) - \langle \nabla g(x), z\rangle , we

obtain immediately that

1

2L
\| \nabla g(x) - \nabla g(y)\| 2 + g(x) + \langle \nabla g(x), y - x\rangle \leq g(y).(A.1)

Next, since x \in \scrX , the first-order optimality condition says that  - \nabla g(x) \in \partial \varphi (x), to
which we can apply the convexity of \varphi to deduce

\varphi (x) + \langle  - \nabla g(x), y - x\rangle \leq \varphi (y).(A.2)

7Specifically, we apply [19, Proposition 2.5] to the mapping \scrG \theta . Notice that [19, Proposition 2.5]
requires the function f : \BbbR d \rightarrow \BbbR d there to have locally Lipschitz Jacobian, but this condition was
only used to show the next statement: ``for any fixed z \in \BbbR n, given any \epsilon > 0, there exists r\epsilon > 0
such that R(x) := f(x) - z - Df(z)(x - z) is \epsilon -Lipschitz on \BbbB (z, r\epsilon )."" We point out here that merely
requiring f there to be continuously differentiable would suffice. Indeed, we can choose r\epsilon > 0 such
that supy1,y2\in \BbbB (z,r\epsilon ) \| Df(y1) - Df(y2)\| 2 \leq \epsilon , where \| \cdot \| 2 denotes the spectral norm. Then, taking

arbitrary x1, x2 \in \BbbB (z, r\epsilon ), by calculus we have \| R(x1) - R(x2)\| = \| f(x1) - f(x2) - Df(z)(x1 - x2)\| =

\| 
\int 1
0 (Df(x2 + t(x1  - x2))  - Df(z))(x1  - x2)dt\| \leq 

\int 1
0 \| Df(x2 + t(x1  - x2))  - Df(z)\| 2\| x1  - x2\| dt\leq 

\epsilon \| x1  - x2\| , which proves that R is \epsilon -Lipschitz continuous on \BbbB (z, r\epsilon ). Since our \scrG \theta is continuously
differentiable because h\in C2(\BbbR n), [19, Proposition 2.5] is applicable.
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84 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

Summing (A.1) and (A.2), we see further that \psi (x) + 1
2L\| \nabla g(x) - \nabla g(y)\| 2 \leq \psi (y).

Notice that \psi (x) = \psi (y) due to x, y \in \scrX . Hence, we have 1
2L\| \nabla g(x) - \nabla g(y)\| 2 \leq 0,

which implies that \nabla g(x) =\nabla g(y). Consequently, \nabla g is constant on the set \scrX , and
\scrX \subseteq \nabla g - 1(v)\cap \partial \varphi  - 1( - v). The converse inclusion follows from the first-order sufficient
condition for convex optimization problems and the fact that \partial \psi =\nabla g+ \partial \varphi .

Appendix B. Proof of Theorem 3.5.

Proof. From [47, Exercise 8.8(c)], we have \partial \psi =\nabla g+\partial \varphi . Hence, the stationarity
of \=x implies that  - \nabla g(\=x) \in \partial \varphi (\=x). Without loss of generality, we assume \=x= 0, and
replace g,\varphi by g(\cdot ) - \langle \nabla g(0), \cdot \rangle and \varphi (\cdot ) + \langle \nabla g(0), \cdot \rangle , respectively. Then we have

 - \nabla g(0) = 0\in \partial \varphi (0), \~\psi = g+ \iota K .(B.1)

Before proving items (i)--(iii), we first establish two auxiliary facts. Our first goal is
to demonstrate the existence of a neighborhood V of (0,0) such that

V \cap gph\partial \varphi = V \cap gph\partial \iota K .

According to [26, equation (4.2.7)] (see also [40, Example 5.3.17]), since \varphi is polyhedral
with 0\in dom\varphi , there exists a neighborhood V1 of 0 such that

\varphi (x) = p(x) +\varphi (0) \forall x\in V1, where p(x) :=\varphi \prime (0;x).

This equation also establishes that

p is proper, closed, and convex, and \partial \varphi (x) = \partial p(x) \forall x\in V1.(B.2)

Hence, by [47, Theorem 11.1] we have p\ast \ast = p, where p\ast is the convex conjugate of p.
Applying [6, Proposition 17.17], it follows that

p= p\ast \ast = (\iota \partial \varphi (0))
\ast = \sigma \partial \varphi (0).(B.3)

Letting C = \partial \varphi (0), we know that C is a polyhedral set, as stated in [47, Proposition
10.21]. Moreover, we have  - \nabla g(0) = 0\in \partial \varphi (0) = \partial p(0) =C. By utilizing [47, Exercise
6.47], we know that there exists an open neighborhood V2 of 0 such that

TC(0)\cap V2 =C \cap V2.

Consequently, for each y \in V2, we have \partial \iota TC(0)(y) = \partial \iota C(y), as the subgradient can
be defined locally. This implies that

(V2 \times \BbbR n)\cap gph\partial \iota TC(0) = (V2 \times \BbbR n)\cap gph\partial \iota C .

From [46, Theorem 23.5], we see further that

(\BbbR n \times V2)\cap gph\partial \sigma TC(0) = (\BbbR n \times V2)\cap gph\partial \sigma C .

Notice that \sigma TC(0) = \iota NC(0) = \iota K ; by (B.2) and (B.3) we conclude that

V \cap gph\partial \iota K = V \cap gph\partial \varphi ,(B.4)

where V = V1 \times V2.
The second goal is to show that

\varphi (x) - \varphi (0) = \iota K(x) - \iota K(0) \forall (x, v)\in V \cap gph\partial \varphi = V \cap gph\partial \iota K .(B.5)
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 85

Taking (x, v) \in V \cap gph\partial \varphi = V \cap gph\partial \iota K , we know x \in dom\partial \iota K = dom \iota K . Since
\partial \iota K =NK and V = V1 \times V2 with V2 being a neighborhood of 0, this implies that

(x,0)\in V \cap gph\partial \iota K = V \cap gph\partial \varphi ,

where we have used (B.4) for the equality. The above display implies 0 \in \partial \varphi (x).
Using this together with 0 \in \partial \varphi (0) (see (B.1)) and the convexity of \varphi , we see that
\varphi (x) =\varphi (0), which means that \varphi (x) - \varphi (0) = 0 = \iota K(x) - \iota K(0).

We are now ready to prove (i)--(iii). We start with (i). Since \nabla g is continuous
and \nabla g(0) = 0 (see (B.1)), we can choose a sufficiently small a> 0 such that

(\BbbB a, - \nabla g(\BbbB a) + \BbbB a)\subseteq V.(B.6)

Take U = \BbbB a \times \BbbB a. Suppose (x, v)\in U \cap gph\partial \psi ; then it holds that

(x, v - \nabla g(x))
(\mathrm{a})
\in gph\partial \varphi , (x, v - \nabla g(x))

(\mathrm{b})
\in (\BbbB a, - \nabla g(\BbbB a) + \BbbB a)

(\mathrm{c})

\subseteq V,

where (a) holds because \partial \psi =\nabla g+\partial \varphi , (b) holds as x, v \in \BbbB a, and (c) is due to (B.6).
Consequently, we know that

(x, v - \nabla g(x))\in V \cap gph\partial \varphi = V \cap gph\partial \iota K ,(B.7)

where we have used (B.4). Then, we know (x, v) \in U \cap gph\partial \~\psi since \partial \~\psi =\nabla g + \partial \iota K .
This proves U \cap gph\partial \psi \subseteq U \cap gph\partial \~\psi . A similar argument shows that U \cap gph\partial \psi \supseteq 
U \cap gph\partial \~\psi , which proves that U \cap gph\partial \psi =U \cap gph\partial \~\psi .

Next, notice that for all (x, v) \in U \cap gph\partial \psi = U \cap gph\partial \~\psi , we can deduce (B.7)
as argued above. This together with (B.5) shows that

\psi (x) - \psi (0) - 
\Bigl( 

\~\psi (x) - \~\psi (0)
\Bigr) 

=\varphi (x) - \varphi (0) - (\iota K(x) - \iota K(0)) = 0.

This proves (i). Part (ii) follows from (i) and Remark 2.2.
Finally, for part (iii), assume that 0 is a local minimizer of \psi ; then we may

take a sufficiently small neighborhood U1 of 0 such that for all x \in U1, we have
\psi (x) \geq \psi (0), (x,0) \in U , and (x,\nabla g(x)) \in U , where U is given in item (i). Then, for
all x\in U1 \cap dom \~\psi , noticing that \nabla g(x) + 0\in \nabla g(x) + \partial \iota K(x) = \partial \~\psi (x), we have

(x,\nabla g(x))\in U \cap gph\partial \~\psi 
(\mathrm{a})
= U \cap gph\partial \psi , and hence \~\psi (x) - \~\psi (0)

(\mathrm{b})
= \psi (x) - \psi (0)\geq 0,

where we have used item (i) for (a) and (b). This means that 0 is a local minimizer of
\~\psi . Moreover, if x \in U1 \cap \Omega , then by the first-order optimality condition, we see that
(x,0) \in U \cap gph\partial \psi = U \cap gph\partial \~\psi , and hence \~\psi (x) - \~\psi (0) = \psi (x) - \psi (0) = 0 by item
(i). This shows that U1 \cap \Omega \subseteq \~\Omega . A similar argument shows that U1 \cap \~\Omega \subseteq U1 \cap \Omega and
proves that \Omega locally agrees with \~\Omega .

Appendix C. Proof of Lemma 3.10.

Proof. There is no loss of generality if we assume \=x= 0. Then g(0) =\psi (0) = inf \psi .
In view of the KL assumption and Proposition 2.3, by shrinking the U in (3.18) further
if necessary, we can deduce that there exists c1 > 0 such that

g(x) - g(0)\geq c - 
1

1 - \alpha 

1 dist
1

1 - \alpha (x,\Omega ) \forall x\in U \cap K.(C.1)
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86 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

Shrink U further if necessary such that

g(x) - g(0)\leq 1 \forall x\in U \cap K.(C.2)

Fix any x\in U \cap K with g(x)> g(0). We define

I :=
\Bigl\{ 
i\in J3 : | xi| \leq c2(g(x) - g(0))\gamma (1 - \alpha )

\Bigr\} 
,(C.3)

where c2 = cc\gamma 1 , with c1 defined in (C.1) and c and \gamma defined in (3.18). We define
\rho \in \BbbR J3+ as \rho i = | xi| for all i \in J3. Then, by (3.18) and noticing that x \in S\rho , we see
that

dist(x,\Omega \cap S\rho )\leq cmax\{ dist(x,S\rho ),dist(x,\Omega )\} \gamma = cdist\gamma (x,\Omega )

(\mathrm{a})

\leq cc\gamma 1(g(x) - g(0))\gamma (1 - \alpha ) = c2(g(x) - g(0))\gamma (1 - \alpha ),
(C.4)

where (a) follows from (C.1). Additionally, let \^x = P\Omega \cap S\rho 
(x), and we know that

\| x - \^x\| = dist(x,\Omega \cap S\rho ). We further define the following three index sets:

I1 := \{ i\in I : \rho i = 0\} , I2 := I \setminus I1, I3 := J3 \setminus I.(C.5)

Then for i\in I2\cup I3 we have | xi| > 0 due to \rho i = | xi| for i\in J3 and (C.3), and moreover,

\forall i\in I1, \^xi = \rho i = 0, | xi  - \^xi| = | xi| 
(\mathrm{a})

\leq c2(g(x) - g(0))\gamma (1 - \alpha ),

\forall i\in I2,
1

| xi| 
| xi  - \^xi| 2

(\mathrm{b})

\leq 4

| xi| 
| xi| 2 = 4| xi| 

(\mathrm{c})

\leq 4c2(g(x) - g(0))\gamma (1 - \alpha ),

\forall i\in I3,
1

| xi| 
| xi  - \^xi| 2

(\mathrm{d})

\leq c22(g(x) - g(0))2\gamma (1 - \alpha )

| xi| 
(\mathrm{e})

\leq c2(g(x) - g(0))\gamma (1 - \alpha ),

(C.6)

where in (a) and (c) we have used the fact that I1, I2 \subseteq I in (C.5) and the definition
of I in (C.3), (b) follows from the facts that \^x \in S\rho and that for all y \in S\rho , i \in J3 it
holds that | xi  - yi| \leq | xi| + | yi| \leq 2| xi| , (d) holds because of the relation | xi  - \^xi| \leq 
\| x - \^x\| = dist(x,\Omega \cap S\rho ) and the bound in (C.4), and (e) follows from the definition
of I3 in (C.5) and that of I in (C.3). Therefore, by using the convexity of g, we can
deduce that

g(x) - g(0) =\psi (x) - \psi (0) =\psi (x) - \psi (\^x) = g(x) - g(\^x)

(\mathrm{a})

\leq 
n\sum 
i=1

| \nabla g(x)i| | xi  - \^xi| 
(\mathrm{b})
=

\sum 
i\in J2\cup J3

| \nabla g(x)i| | xi  - \^xi| 

(\mathrm{c})
=
\sum 
i\in J2

| \nabla g(x)i| | xi  - \^xi| +
\sum 
i\in I1

| \nabla g(xi)| | xi| 
1
2 | xi| 

1
2+
\sum 

i\in I2\cup I3

| \nabla g(x)i| 
\sqrt{} 
| xi| 

1\sqrt{} 
| xi| 
| xi  - \^xi| 

(\mathrm{d})

\leq 
\sqrt{} \sum 
i\in J2

| \nabla g(xi)| 2 +
\sum 
i\in J3

| xi| | \nabla g(xi)| 2
\sqrt{}    \sum 
i\in J2

| xi  - \^xi| 2 +
\sum 
i\in I1

| xi| +
\sum 

i\in I2\cup I3

| xi  - \^xi| 2
| xi| 

(\mathrm{e})

\leq c4

\sqrt{} \sum 
i\in J2

| \nabla g(xi)| 2 +
\sum 
i\in J3

| xi| | \nabla g(xi)| 2 \cdot (g(x) - g(0))
\gamma (1 - \alpha )

2 ,

where (a) follows from the convexity of g, which implies that g(x) - g(\^x) \leq \langle \nabla g(x),
x  - \^x\rangle , (b) follows from condition (ii), which implies xi = \^xi for all i \in J1,8 (c)

8Recall that we assumed \=x = 0. Then both x and \^x \in 0 + K, which means xi = \^xi for i \in J1
according to condition (ii).
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KL EXPONENT VIA HADAMARD PARAMETRIZATION 87

follows from the definition of the index sets I1, I2, and I3 in (C.5), (d) follows from
the Cauchy--Schwarz inequality, (e) follows from the facts that

\sum 
i\in J2 | xi  - \^xi| 2 \leq 

\| x - \^x\| 2 \leq c22(g(x) - g(0))2\gamma (1 - \alpha ) \leq c22(g(x) - g(0))\gamma (1 - \alpha ) (which follows from (C.4)
and (C.2)), (C.6), and we set c4 = 2

\surd 
nmax\{ c2,

\surd 
c2\} . Rearranging this inequality

and noticing that \beta = 1 - \gamma (1 - \alpha ), we obtain

1

c24
(g(x) - g(0))1+\beta \leq 

\sum 
i\in J2

| \nabla g(xi)| 2 +
\sum 
i\in J3

| xi| | \nabla g(xi)| 2.

Appendix D. Example for Remark 3.12.

Example D.1. Let x \in \BbbR 2, and h(x) = (1  - \alpha )(| x1| 
1
\gamma  - x2)

1
1 - \alpha 

+  - x1  - x2 for
x= (x1, x2)\in \BbbR 2 with d+ := max\{ d,0\} for d\in \BbbR , 0<\gamma \leq 1

2 , \alpha \in ( 1
2 ,1), and \mu = 1. We

would like to show that the KL exponent of the corresponding f in (1.1) is \alpha at 0.
Clearly, h\in C2(\BbbR 2) and is convex. Moreover, 0 is a global minimizer of f . Therefore,
we know 0 is also a global minimizer of F in (1.4) by Proposition 3.3. By Theorem
3.5, we know the KL exponent of f at 0 coincides with the KL exponent of \~f := \~h+\iota K

at 0, where \~h(x) = (1 - \alpha )(| x1| 
1
\gamma  - x2)

1
1 - \alpha 

+ and K =N\partial \| 0\| 1
( - \nabla h(0)) = \BbbR 2

+. Take x to
be sufficiently close to 0 with x\in K; then x1, x2 \geq 0 and we have

dist(0, \partial \~f(x)) = dist( - \nabla \~h(x),NK(x))\geq dist((x
1
\gamma 

1  - x2)
\alpha 

1 - \alpha 

+ ,N\BbbR +
(x2))

(\mathrm{a})
= (x

1
\gamma 

1  - x2)
\alpha 

1 - \alpha 

+ = (\~h(x) - \~h(0))\alpha /(1 - \alpha )\alpha ,

where in (a) we have used 0 \in N\BbbR +
(x2)\subseteq \BbbR  - . Therefore, the KL exponent of f at 0

is \alpha . This exponent is tight since for all x\in K with x1 \leq 1 we have

dist(0, \partial \~f(x))\leq \| \nabla \~h(x)\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left[  1
\gamma x

1
\gamma  - 1

1 (x
1
\gamma 

1  - x2)
\alpha 

1 - \alpha 

+

 - (x
1
\gamma 

1  - x2)
\alpha 

1 - \alpha 

+

\right]  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 
\sqrt{} 

1/\gamma 2 + 1(\~h(x) - \~h(0))\alpha /(1 - \alpha )\alpha .

(D.1)

Next, let a = (a1, a2), b = (b1, b2) \in \BbbR 2, Q(a, b) := (| a21  - b21| 
1
\gamma  - a22 + b22)

\alpha 
1 - \alpha 

+ , and

T (a, b) := 2
\gamma sgn(a21  - b21)| a21  - b21| 

1
\gamma  - 1, where

sgn(y) =

\Biggl\{ 
y
| y| if y \not = 0,

0 if y= 0.

Then we know F in (1.2) and \nabla F can be written as

F (a, b) = h(a2  - b2) + \| a\| 2 + \| b\| 2

= (1 - \alpha )(| a21  - b21| 
1
\gamma  - a22 + b22)

1
1 - \alpha 

+ + 2b21 + 2b22,

\nabla F (a, b) =

\left[    
a1T (a, b)Q(a, b)
 - 2a2Q(a, b)

4b1  - b1T (a, b)Q(a, b)
4b2 + 2b2Q(a, b)

\right]    .
Let us evaluate the gradient \nabla F ((t,0),0) and function value F ((t,0),0) with t > 0:

\nabla F ((t,0),0) =
\Bigl[ 
2
\gamma t

2
\gamma (1 - \alpha )

 - 1 0 0 0
\Bigr] \top 
, F ((t,0),0) = (1 - \alpha )t

2
\gamma (1 - \alpha ) .
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88 W. OUYANG, Y. LIU, T. K. PONG, AND H. WANG

Clearly, we have \| \nabla F ((t,0),0)\| = 2
\gamma (F ((t,0),0)  - F (0,0))

2 - \gamma (1 - \alpha )
2 /(1  - \alpha )

2 - \gamma (1 - \alpha )
2 ,

which shows that the KL exponent of F at 0 is no less than 1+\beta 
2 with \beta = 1 - \gamma (1 - \alpha ).

We next verify the error bound condition (3.21). Notice that \Omega := Arg minf =

\{ x \in \BbbR 2
+ : x2 \geq x

1
\gamma 

1 \} = Arg min \~f . Taking arbitrary x \in K with x1 \leq 1 and defining
y := P\Omega (x), we have

\~f(x) - \~f(0) = \~f(x) - \~f(y)
(\mathrm{a})

\leq \langle \nabla \~h(x), x - y\rangle \leq \| \nabla \~h(x)\| dist(x,\Omega )

(\mathrm{b})

\leq 
\sqrt{} 

1/\gamma 2 + 1( \~f(x) - \~f(0))\alpha dist(x,\Omega )/(1 - \alpha )\alpha ,

where in (a) we have used the convexity of \~f and \nabla \~h(x)\in \partial \~f(x), and in (b) we have
used the second inequality in (D.1) and the fact \~f(x)  - \~f(0) = \~h(x)  - \~h(0) due to
x \in K. Rearranging terms in the above inequality, we see that for all x \in K with
x1 \leq 1 it holds that

\sigma dist(x,\Omega )\geq (x
1
\gamma 

1  - x2)+, where \sigma =
\sqrt{} 

1/\gamma 2 + 1/(1 - \alpha ).(D.2)

Now, for an arbitrary \rho \in \BbbR 2
+, we define the set \Omega \rho := \Omega \cap S\rho , where S\rho := \{ x \in \BbbR 2 :

| xi| \leq \rho i \forall i= 1,2\} . For any x \in K with max\{ x1, x2\} \leq 1/2, define z := PS\rho 
(x). Then

it can be verified that z \in \BbbR 2
+ and max\{ z1, z2\} \leq max\{ x1, x2\} \leq 1/2 since x\in \BbbR 2

+. We
further define p\in \Omega \rho in the following manner and calculate z  - p:

p= (min\{ z\gamma 2 , z1\} , z2), z  - p= (max\{ z1  - z\gamma 2 ,0\} ,0).(D.3)

Then we have

\| z  - p\| = max\{ z1  - z\gamma 2 ,0\} 
(\mathrm{a})

\leq (z
1
\gamma 

1  - z2)\gamma +
(\mathrm{b})

\leq \sigma \gamma dist\gamma (z,\Omega ),(D.4)

where (a) clearly holds if z1 \leq z\gamma 2 , while when z1 > z\gamma 2 , we deduce (a) from z1  - z\gamma 2 =

(z
1
\gamma 

1 )\gamma  - z\gamma 2 \leq (z
1
\gamma 

1  - z2)\gamma ,9 and (b) follows from (D.2) thanks to z \in K and z1 \leq 1.
Therefore, we have any x\in K with max\{ x1, x2\} \leq 1/2 and z := PS\rho (x) that

dist(x,\Omega \rho )\leq \| x - z\| + dist(z,\Omega \rho )
(\mathrm{a})

\leq dist(x,S\rho ) + \| z  - p\| 
(\mathrm{b})

\leq dist(x,S\rho ) + \sigma \gamma dist\gamma (z,\Omega )\leq dist(x,S\rho ) + \sigma \gamma (dist(x,\Omega ) + \| x - z\| )\gamma 
(\mathrm{c})

\leq dist(x,S\rho ) + \sigma \gamma (dist\gamma (x,\Omega ) + dist\gamma (x,S\rho ))
(\mathrm{d})

\leq cmax\{ dist(x,S\rho ),dist(x,\Omega )\} \gamma ,

where (a) holds in view of z = PS\rho (x) and the p \in \Omega \rho constructed in (D.3), (b) holds
because of (D.4), in (c) we have used z = PS\rho (x) and the inequality (c+d)\gamma \leq c\gamma +d\gamma 

for any c, d \geq 0 (see footnote 9), and in (d) we have used max\{ x1, x2\} \leq 1/2 and
0\in S\rho to show that dist(x,S\rho )\leq \| x\| < 1 and set c= 1 + 2\sigma \gamma . Consequently, we know
the condition (3.21) holds, and by Theorem 3.11 we know the KL exponent of F is
1+\beta 
2 with \beta = 1 - \gamma (1 - \alpha ), which is tight by the previous argument.

9The second inequality follows from the fact that (c + d)\gamma \leq c\gamma + d\gamma for all c, d \geq 0; this last
inequality clearly holds if c = 0 or d = 0, and when c > 0 and d > 0 it holds because 1 = c

c+d
+ d

c+d
\leq 

( c
c+d

)\gamma + ( d
c+d

)\gamma , thanks to \gamma \in (0, 1
2

].
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