Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113133
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligenceen_US
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorQian, Yen_US
dc.creatorTao, Ten_US
dc.creatorPan, Sen_US
dc.creatorQi, Hen_US
dc.date.accessioned2025-05-21T06:21:07Z-
dc.date.available2025-05-21T06:21:07Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/113133-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rights© 2024 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Qian, Y., Tao, T., Pan, S., & Qi, H. (2025). Convergence of ZH-Type Nonmonotone Descent Method for Kurdyka-Łojasiewicz Optimization Problems. SIAM Journal on Optimization, 35(2), 1089-1109 is available at https://doi.org/10.1137/24m1669153.en_US
dc.subjectFull convergenceen_US
dc.subjectKL propertyen_US
dc.subjectNonconvex and nonsmooth optimizationen_US
dc.subjectProximal gradient methodsen_US
dc.subjectZH-type nonmonotone descent methoden_US
dc.titleConvergence of ZH-type nonmonotone descent method for Kurdyka-Łojasiewicz optimization problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1089en_US
dc.identifier.epage1109en_US
dc.identifier.volume35en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/24M1669153en_US
dcterms.abstractWe propose a novel iterative framework for minimizing a proper lower semicontinuous Kurdyka–Łojasiewicz (KL) function \(\Phi\). It comprises a Zhang–Hager (ZH-type) nonmonotone decrease condition and a relative error condition. Hence, the sequence generated by the ZH-type nonmonotone descent methods will fall within this framework. Any sequence conforming to this framework is proved to converge to a critical point of \(\Phi\). If in addition \(\Phi\) has the KL property of exponent \(\theta \!\in (0,1)\) at the critical point, the convergence has a linear rate for \(\theta \in (0,1/2]\) and a sublinear rate of exponent \(\frac {1-\theta }{1-2\theta }\) for \(\theta \in (1/2,1)\). To the best of our knowledge, this is the first work to establish the full convergence of the iterate sequence generated by a ZH-type nonmonotone descent method for nonconvex and nonsmooth optimization problems. The obtained results are also applied to achieve the full convergence of the iterate sequences produced by the proximal gradient method and Riemannian gradient method with the ZH-type nonmonotone line-search.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2025, v. 35, no. 2, p. 1089-1109en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2025-
dc.identifier.eissn1095-7189en_US
dc.description.validate202505 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3608-
dc.identifier.SubFormID50453-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (12371299)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
24m1669153.pdf427.24 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.