Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113133
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Data Science and Artificial Intelligence | en_US |
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Qian, Y | en_US |
dc.creator | Tao, T | en_US |
dc.creator | Pan, S | en_US |
dc.creator | Qi, H | en_US |
dc.date.accessioned | 2025-05-21T06:21:07Z | - |
dc.date.available | 2025-05-21T06:21:07Z | - |
dc.identifier.issn | 1052-6234 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/113133 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. | en_US |
dc.rights | © 2024 Society for Industrial and Applied Mathematics | en_US |
dc.rights | The following publication Qian, Y., Tao, T., Pan, S., & Qi, H. (2025). Convergence of ZH-Type Nonmonotone Descent Method for Kurdyka-Łojasiewicz Optimization Problems. SIAM Journal on Optimization, 35(2), 1089-1109 is available at https://doi.org/10.1137/24m1669153. | en_US |
dc.subject | Full convergence | en_US |
dc.subject | KL property | en_US |
dc.subject | Nonconvex and nonsmooth optimization | en_US |
dc.subject | Proximal gradient methods | en_US |
dc.subject | ZH-type nonmonotone descent method | en_US |
dc.title | Convergence of ZH-type nonmonotone descent method for Kurdyka-Łojasiewicz optimization problems | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1089 | en_US |
dc.identifier.epage | 1109 | en_US |
dc.identifier.volume | 35 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.doi | 10.1137/24M1669153 | en_US |
dcterms.abstract | We propose a novel iterative framework for minimizing a proper lower semicontinuous Kurdyka–Łojasiewicz (KL) function \(\Phi\). It comprises a Zhang–Hager (ZH-type) nonmonotone decrease condition and a relative error condition. Hence, the sequence generated by the ZH-type nonmonotone descent methods will fall within this framework. Any sequence conforming to this framework is proved to converge to a critical point of \(\Phi\). If in addition \(\Phi\) has the KL property of exponent \(\theta \!\in (0,1)\) at the critical point, the convergence has a linear rate for \(\theta \in (0,1/2]\) and a sublinear rate of exponent \(\frac {1-\theta }{1-2\theta }\) for \(\theta \in (1/2,1)\). To the best of our knowledge, this is the first work to establish the full convergence of the iterate sequence generated by a ZH-type nonmonotone descent method for nonconvex and nonsmooth optimization problems. The obtained results are also applied to achieve the full convergence of the iterate sequences produced by the proximal gradient method and Riemannian gradient method with the ZH-type nonmonotone line-search. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on optimization, 2025, v. 35, no. 2, p. 1089-1109 | en_US |
dcterms.isPartOf | SIAM journal on optimization | en_US |
dcterms.issued | 2025 | - |
dc.identifier.eissn | 1095-7189 | en_US |
dc.description.validate | 202505 bcch | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | a3608 | - |
dc.identifier.SubFormID | 50453 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | National Natural Science Foundation of China (12371299) | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
24m1669153.pdf | 427.24 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.