Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112864
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorElsayed, H-
dc.creatorEl-Mowafy, A-
dc.creatorAllahvirdi-Zadeh, A-
dc.creatorWang, K-
dc.creatorMi, X-
dc.date.accessioned2025-05-09T06:12:46Z-
dc.date.available2025-05-09T06:12:46Z-
dc.identifier.urihttp://hdl.handle.net/10397/112864-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Elsayed, H., El-Mowafy, A., Allahvirdi-Zadeh, A., Wang, K., & Mi, X. (2025). A Combination of Classification Robust Adaptive Kalman Filter with PPP-RTK to Improve Fault Detection for Integrity Monitoring of Autonomous Vehicles. Remote Sensing, 17(2), 284 is available at https://doi.org/10.3390/rs17020284.en_US
dc.subjectAdaptive Kalman filteren_US
dc.subjectAutonomous vehiclesen_US
dc.subjectFault detection and identificationen_US
dc.subjectIntegrity monitoringen_US
dc.subjectPPP-RTKen_US
dc.subjectRobust estimationen_US
dc.titleA combination of classification robust adaptive Kalman filter with PPP-RTK to improve fault detection for integrity monitoring of autonomous vehiclesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume17-
dc.identifier.issue2-
dc.identifier.doi10.3390/rs17020284-
dcterms.abstractReal-time integrity monitoring (IM) is essential for autonomous vehicle positioning, requiring high availability and manageable computational load. This research proposes using precise point positioning real-time kinematic (PPP-RTK) as the positioning method, combined with an improved classification adaptive Kalman filter (CAKF) for processing. PPP-RTK enhances IM availability by allowing undifferenced and uncombined observations, enabling individual observation exclusion during fault detection and exclusion (FDE). The CAKF reduces FDE computational load by using a robustness test instead of traditional FDE methods, improving precision and availability in protection level estimation. Epoch-wise weighting adjustments in the robustness test create a more accurate stochastic model, aided by an adaptive unit weight variance (UWV) calculated with a sliding window, achieving a 7–28% UWV reduction. Three test scenarios with up to four simultaneous faults in code and phase observations, ranging from 1 to 200 m and 0.4 to 20 m, respectively, demonstrated successful identification and de-weighting of faults, resulting in maximum positioning errors of 6 mm (horizontal) and 11 mm (vertical). The method reduced FDE computational load by 50–99.999% compared to other approaches.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRemote sensing, Jan. 2025, v. 17, no. 2, 284-
dcterms.isPartOfRemote sensing-
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85215805575-
dc.identifier.eissn2072-4292-
dc.identifier.artn284-
dc.description.validate202505 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Australian Research Council, grant number (DP240101710); the International Partnership Program of the Chinese Academy of Sciences (CAS), grant number (021GJHZ2023010FN); National Natural Science Foundation of China, grant number (12473078)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
remotesensing-17-00284.pdf6.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.