Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112574
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorFan, J-
dc.creatorYin, Y-
dc.creatorWang, T-
dc.creatorDong, W-
dc.creatorZheng, P-
dc.creatorWang, L-
dc.date.accessioned2025-04-17T06:34:37Z-
dc.date.available2025-04-17T06:34:37Z-
dc.identifier.issn2095-7513-
dc.identifier.urihttp://hdl.handle.net/10397/112574-
dc.language.isoenen_US
dc.publisherHigher Education Pressen_US
dc.rights© The Author(s) 2024. This article is published with open access at link.springer.com and journal. hep.com.cnen_US
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Fan, J., Yin, Y., Wang, T. et al. Vision-language model-based human-robot collaboration for smart manufacturing: A state-of-the-art survey. Front. Eng. Manag. 12, 177–200 (2025) is available at https://doi.org/10.1007/s42524-025-4136-9.en_US
dc.subjectHuman–robot collaborationen_US
dc.subjectLarge language odelsen_US
dc.subjectSmart manufacturingen_US
dc.subjectVision-language modelsen_US
dc.titleVision-language model-based human-robot collaboration for smart manufacturing : a state-of-the-art surveyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage177-
dc.identifier.epage200-
dc.identifier.volume12-
dc.identifier.issue1-
dc.identifier.doi10.1007/s42524-025-4136-9-
dcterms.abstractHuman-robot collaboration (HRC) is set to transform the manufacturing paradigm by leveraging the strengths of human flexibility and robot precision. The recent breakthrough of Large Language Models (LLMs) and Vision-Language Models (VLMs) has motivated the preliminary explorations and adoptions of these models in the smart manufacturing field. However, despite the considerable amount of effort, existing research mainly focused on individual components without a comprehensive perspective to address the full potential of VLMs, especially for HRC in smart manufacturing scenarios. To fill the gap, this work offers a systematic review of the latest advancements and applications of VLMs in HRC for smart manufacturing, which covers the fundamental architectures and pretraining methodologies of LLMs and VLMs, their applications in robotic task planning, navigation, and manipulation, and role in enhancing human–robot skill transfer through multimodal data integration. Lastly, the paper discusses current limitations and future research directions in VLM-based HRC, highlighting the trend in fully realizing the potential of these technologies for smart manufacturing.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationFrontiers of engineering management, Mar. 2025, v. 12, no. 1, p. 177-200-
dcterms.isPartOfFrontiers of engineering management-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-105001064253-
dc.identifier.eissn2096-0255-
dc.description.validate202504 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextResearch Institute for Advanced Manufacturing (RIAM) of The Hong Kong Polytechnic University; Intra-Faculty Interdisciplinary Project 2023/24 (1-WZ4N), by the Research Committee of The Hong Kong Polytechnic University; State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology (IMETKF2024010); Guangdong–Hong Kong Technology Cooperation Funding Scheme (GHX/075/22GD); Innovation and Technology Commission (ITC); COMAC International Collaborative Research Project (COMAC-SFGS-2023-3148)en_US
dc.description.pubStatusPublisheden_US
dc.description.TASpringer Nature (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s42524-025-4136-9.pdf3.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.