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Abstract human-robot collaboration (HRC) is set to
transform the manufacturing paradigm by leveraging the
strengths of human flexibility and robot precision. The
recent breakthrough of Large Language Models (LLMs)
and Vision-Language Models (VLMs) has motivated the
preliminary explorations and adoptions of these models in
the smart manufacturing field. However, despite the
considerable amount of effort, existing research mainly
focused on individual components without a comprehensive
perspective to address the full potential of VLMs, especially
for HRC in smart manufacturing scenarios. To fill the gap,
this work offers a systematic review of the latest advance-
ments and applications of VLMs in HRC for smart manu-
facturing, which covers the fundamental architectures and
pretraining methodologies of LLMs and VLMs, their
applications in robotic task planning, navigation, and
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manipulation, and role in enhancing human—robot skill
transfer through multimodal data integration. Lastly, the
paper discusses current limitations and future research
directions in VLM-based HRC, highlighting the trend in
fully realizing the potential of these technologies for smart
manufacturing.
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1 Introduction

human-robot collaboration (HRC) has been regarded as a
promising pathway to revolutionise the manufacturing
sector by leveraging the complementary strengths of
humans and robots (Matheson et al., 2019). This synergy
aims to enhance productivity, adaptability, and effi-
ciency, marking a significant paradigm shift in smart
manufacturing (Wang et al., 2019). The recent astonishing
breakthroughs in the Artificial Intelligence (Al) field,
including computer vision and natural language process-
ing, have exhibited huge potential to drive this transfor-
mation by endowing robots with multimodal perception
and understanding capabilities, enabling more sophisti-
cated and seamless collaborations between humans and
robots (Fan et al., 2022; Wang et al., 2024c).

As the most recent advancement of Al, Large
Language Models, such as GPT-3 (Brown et al., 2020)
and GPT-4 (Achiam et al., 2023), have demonstrated
exceptional capabilities in natural language processing,
enabling them to exhibit human-like comprehension and
conversational abilities. However, standard LLMs are
inherently limited to processing textual information,
which restricts their applicability in scenarios such as
HRC that require visual context. In response to this limi-
tation, Vision-Language Models (VLMs) have been
developed to integrate visual and textual data (Zhou et
al., 2022), thereby enhancing the robot's ability to interpret
and interact with its environment. Prevalent examples of
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VLMs include CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021), which have shown promise in tasks
such as image captioning, visual question answering, and
multimodal reasoning. The significant advancements of
VLMs have inspired the initial adoptions in HRC scenarios
to enhance robotic intelligence and human—robot commu-
nication flexibility (Fan and Zheng, 2024; Park et al.,
2024). However, existing research endeavors are rather
scattered in different applications and perspectives,
resulting in a lack of a comprehensive investigation of the
potential of VLMs in HRC scenarios.

This paper aims to bridge this gap by providing a
systematic review of the latest advancements and applica-
tions of VLMs in HRC. The overview of the structure of
this survey is illustrated in Fig. 1. The exploration begins
with the fundamental architectures and pretraining
methodologies of LLMs and VLMs in Section 3, in
which we briefly introduce the intricacies of transformer
architectures, the mechanisms of pretraining on large-
scale data sets, and the subsequent fine-tuning processes
that tailor these models to specific applications. Next, the
practical applications of VLMs in robotic task planning,
navigation, and manipulation are examined in Section 4.
These capabilities are essential for robots to function
effectively in dynamic manufacturing settings where
tasks are varied and environments are constantly chang-
ing. On top of the basic functionalities, it is imperative to
equip robots with advanced skill acquisition ability in
order to better adapt to the futuristic flexible manufacturing
environments. Therefore, the role of VLMs in enhancing
human-robot skill transfer is also explored in Section 5.
Compared to traditional robot skill acquisition methods
that often involve extensive programming, VLMs can
significantly streamline this process by using visual and
linguistic inputs to facilitate more intuitive and effective
human-robot teaching. Lastly, the current challenges,
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that prevent the immediate deployment of VLMs in
manufacturing scenes, and potentid future directions
toward unlocking the full potential of VLMs in smart
manufacturing are discussed in Section 6.

2 Literature review process

The literature review process for this paper follows a
systematic manner to ensure a comprehensive and unbiased
overview of the latest advancements and applications of
VLMs in HRC. As depicted in Fig. 2, an initial search
was employed to identify relevant literature from various
academic databases, including Web of Science, Scopus,
and IEEE Xplore. The search was conducted using a
combination of keywords related to the core topics:
“human-robot” and “vision language,” covering the time
span 2020-2024. The search yielded 63 items from Web
of Science, 113 related documents from Scopus, and 89
from IEEE Xplore (July 15, 2024).

The literature selection process was conducted in two
phases: initial screening and detailed reviewing, to ensure
that the most relevant and high-quality studies were
included. First, an initial filtering process was conducted,
during which only journal and conference papers in
English were included. Papers that were obviously
beyond the scope of this survey were excluded based on
their titles, keywords, and abstracts, resulting in 59
papers. Subsequently, an in-depth review process was
implemented to further identify inadequate items and
categorise suitable papers. Considering the results from
the aforementioned databases are quite limited, supple-
mentary relevant papers were added from other less rigor-
ous search engines such as Google Scholar and arXiv.
Notably, although arXiv papers are not normally accepted
as trustworthy paper sources, a considerable amount of
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Fig. 2 Systematic literature review process and the trend of related publications.

state-of-the-art works related to LLMs and VLMs have
not yet made it to formal publications and can only be
found on arXiv, thereby leading to the frequent inclusion
of arXiv papers in this review. Finally, 109 papers have
been selected as the basis of this survey, which are
further described in Section 3.5.

3 Revisiting LLMs and VLMs

In recent years, significant advancements have been made
in the development of large language models (LLMs)
(Zhao et al., 2023a; Chang et al., 2024). By scaling the
size of data and models, these LLMs have exhibited
exceptional emergent abilities, including instruction
following (Peng et al., 2023), in-context learning (ICL)
(Brown et al., 2020), and chain of thought (CoT) reasoning
(Wei et al., 2022). Despite their impressive zero-shot and
few-shot performance on various natural language
processing (NLP) tasks, LLMs are intrinsically limited in
their ability to interpret visual information, as they can
only process discrete text. To overcome this limitation,
researchers have developed vision-language models
(VLMs) (Zhang et al., 2024a). VLM is designed to learn
rich vision-language correlation from large-scale image-
text pairs, thereby enhancing its capacity for comprehen-
sive and accurate understanding and reasoning. The typical
architectures of LLMs and VLMs are depicted in Fig. 3.
This section provides a brief introduction to the funda-
mental concepts and development status of LLMs and
VLMs, respectively.

3.1 Fundamentals of LLMs

LLMs are normally constructed on the transformer archi-
tecture (Vaswani et al., 2017), which uses a specifically
designed neural network and the multi-head attention
mechanism to understand context and meaning in text.
The core mathematical operation in the self-attention
mechanism is the computation of attention scores, which
are derived from the query (Q), key (K), and value (V)
vectors, as formulated in the following equation:

Attention (Q, K, V) ft (QKT)V 1
ention(Q, K, V) = softmax ,

Vd;
where d, represents the dimensionality of the key vectors.
The softmax function normalizes the attention scores.
The multi-head attention mechanism is then built upon

several parallel self-attention heads:

MultiHead (Q, K, V) = Concat (head,,...,head,) W,, (2)

head; = Attention (QW,,, KWy, VW,), 3)

where W, , Wi, W, are learned projection matrices for
each head, and W, is the output projection matrix. The
two main components of Transformers are encoders and
decoders. Encoders extract and comprehend relevant
information from input text using self-attention, while
decoders generate translated text using the embeddings
from the encoder (Fu et al., 2023). The encoder block
combines multi-head self-attention and feed-forward
neural networks. The output of each encoder layer can be
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Fig.3 Typical architectures of LLMs and VLMs: (a) Three
types of LLMs; (b) The pretraining architectures of VLMs.
(Zhang et al., 2024a).
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represented as:

EncoderOutput = LayerNorm (X + FFN (MultiHead (X))),
“)

where X is the input, FFN is the feed-forward network,
and LayerNorm is the layer normalization operation. In
contrast, the decoder block has an additional cross-atten-
tion mechanism that attends to the encoder’s output:

DecoderOutput =LayerNorm (X + FFN

(MultiHead (X, EncoderOutput))). )

Based on the variation of the encoder-decoder struc-
ture, LLMs can be categorised into three types: Encoder-
only, Decoder-only, and Encoder-Decoder.

* Encoder-only models: These models consist solely
of encoders. While focusing on feature encoding for a
better understanding of the text information, they cannot
directly generate textual output, making them suitable for
tasks like text categorisation (Kenton and Toutanova,
2019).

* Encoder-decoder models: This type of model incor-
porates both encoder and decoder components. They
encode the input into feature information and pass it to
the decoder, which then generates output according to the
sequence. This structure effectively manages the connec-
tion between input and output sequences, making it suitable
for translation and text summarizing tasks (Lewis et al.,
2020).

* Decoder-only models: These models only have

Table 1 Mainstream LLMs

decoder components. They use the encoder to generate a
corresponding sequence from the input encoding, focusing
on generating or predicting output from a series of inputs
(Wang et al., 2022a). They specialize in generation tasks,
such as question answering, and represent the dominant
architecture today.

Table 1 summarizes some well-known LLMs that fall
into these categories. The following content of this
section will briefly cover the pretraining, fine-tuning, and
prompting technologies of LLMs.

3.1.1 Pretraining

Pretraining serves as the initial phase in which an LLM is
subjected to training on an extensive collection of textual
data in an unsupervised manner. This critical phase facili-
tates the development of fundamental linguistic capabili-
ties and representational skills within the model. Utilizing
the scalable features of the Transformer architecture,
which incorporates self-attention mechanisms, the BERT
model (Kenton and Toutanova, 2019) was developed.
This framework advances the training of bidirectional
language models using meticulously crafted tasks on
expansive, unlabeled corpora. The word representations
generated through this pretraining process are context-
sensitive and highly effective with versatile semantic
features. This innovative approach has motivated a
considerable body of subsequent research, giving rise to
the “pretraining and fine-tuning” paradigm. This
paradigm has guided extensive investigations such as

Type Name Year Company Open Source
Encoder-Only BERT (Kenton et al., 2019) 2018 Google Open
RoBERTa (Liu et al., 2019) 2019 Meta Open
ERNIE (Zhang et al., 2019) 2019 Baidu Open
DeBERTa (He et al., 2020) 2020 Microsoft Open
Encoder-Decoder BART (Lewis et al., 2020) 2019 Meta Open
TS5 (Raffel et al., 2020) 2019 Google Open
ChatGLM (GLM et al., 2024) 2023 Tsinghua University Open
FlanUL2 (Tay et al., 2023) 2023 Google Open
Decoder-Only GPT-1 (Radford et al., 2018) 2018 OpenAl Open
GPT-2 (Radford et al., 2019) 2019 OpenAl Open
GPT-3 (Brown et al., 2020) 2020 OpenAl Close
ERNIE3.0 (Sun et al., 2021) 2021 Baidu Close
LaMDA (Thoppilan et al., 2022) 2021 Google Close
PaLM (Chowdbhery et al., 2023) 2022 Google Close
LLaMA (Touvron et al., 2023) 2023 Meta Open
Gemini (Team et al., 2023) 2023 Google Open
GPT-4 (Achiam et al., 2023) 2023 OpenAl Close
Claude (Anthropic 2023) 2023 Anthropic Close
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GPT-2 (Radford et al., 2019) and BART (Lewis et al.,
2020), and the implementation of refined pretraining
methodologies (Sanh et al.,, 2022). In practice, this
paradigm typically involves adjusting the pretrained LLM
through fine-tuning to meet the demands of specific
downstream applications.

3.1.2 Fine-tuning and alignment

After pretraining, LLMs are fine-tuned to specialize in
specific tasks or to align with human values and intents.
Fine-tuning involves training the pretrained model on a
smaller, task-specific data set, often using supervised
learning techniques. Typical fine-tuning approaches are
summarized as follows:

* Transfer Learning: Pretrained LLMs exhibit com-
mendable performance across a spectrum of tasks.
Nonetheless, for enhanced task-specific performance,
these models need to undergo fine-tuning with task-
specific data, a process referred to as transfer learning
(Raffel et al., 2020).

* Instruction-tuning: To ensure models respond effec-
tively to user queries, pretrained models are fine-tuned
using instruction-formatted data, which includes natural
language directives coupled with relevant input-output
pairs. This approach not only enhances the model’s ability
to generalize across new scenarios, but also boosts its
performance on specific tasks. Detailed methodologies
for creating and varying instructional data are outlined in
the literature (Chung et al., 2024).

» Alignment-tuning: LLMs can sometimes produce
inaccurate or harmful content. To address this, alignment-
tuning is conducted using human feedback to adjust
outputs and discourage undesirable responses. This
process ensures models align with ethical standards, char-
acterized by the “HHH” criteria: helpful, honest, and
harmless (Askell et al., 2021). Techniques such as rein-
forcement learning with human feedback (RLHF)
(Ziegler et al., 2019) are employed, where models are
refined through reward modeling (RM) and reinforcement
learning (RL) to meet these criteria.

3.1.3 Prompting

After an LLM has been thoroughly trained and fine-
tuned, the prompting technique is employed to elicit
responses from the LLM. LLMs can be prompted in various
configurations; some setups allow the model to adapt to
instructions without further fine-tuning, while others
require fine-tuning on data sets that incorporate diverse
prompting styles (Kim et al., 2023b). Below is a brief
overview of several commonly used prompt setups:

» Zero-shot prompting: The model is given a task
without any examples, relying solely on its pretrained
knowledge to generate a response (Kojima et al., 2022).

* In-context learning: Also known as few-shot learn-
ing, this method provides the model with a few examples
within the prompt to guide its response (Dong et al.,
2022).

* Chain-of-Thought: A prompting technique where
the model is guided to generate step-by-step reasoning or
explanations for its answers, improving performance on
complex reasoning tasks (Wei et al., 2022).

3.2 Fundamentals of VLMs

The success of large-scale models in the NLP field has
inspired the computer vision community to borrow text
information to enhance visual recognition, leading to the
thriving of VLMs. A VLM typically consists of two
parallel encoders: one for processing visual data (such as
images) and one for textual data (such as descriptions or
instructions). These encoders transform the inputs into
high-dimensional embeddings, which are then aligned or
fused in a shared feature space, allowing the model to
jointly interpret and reason about both visual and
language inputs. The development of VLMs has attracted
considerable attention as vision and language are the
two most semantic-rich information sources. VLM is
crucial for cross-modal applications like image captioning
and visual question answering and plays an even more
significant role in human-robot collaboration in smart
manufacturing environments, where multimodal commu-
nications between human operators and robots are indis-
pensable.

The most essential step of VLMs is pretraining
(Radford et al., 2021), which allows models to learn the
correlation between images and texts by employing a
combination of visual and textual encoders. Typically,
VLMs use separate encoders for each modality (vision
and text), enabling the extraction of meaningful features
from both input types. Subsequently, pretraining objectives
guide the model in learning the relationships between
these visual and textual elements. The rest of this section
will introduce the three aspects of VLMs: vision-
language encoding, vision-language correlation, and
pretraining, of which the related works are summarized in
Table 2.

3.2.1 Vision and language encoding
VLMs employ deep neural networks to extract features
from the image-text pairs in a data set. The network
normally consists of an image encoder and a text encoder,
which respectively encode the image and text of an input
data pair into visual and textual embeddings. This section
outlines the architectures of the deep neural networks
commonly used in VLM for image and text encoding.

* Visual Encoder: 1) CNN-based: Various Convolu-
tional Networks, such as ResNet (He et al., 2016) and
EfficientNet (Tan and Le, 2019), have been developed to
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Table 2 Summarization of VLM pretraining works
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Pretraining Aspect Category Name Reference
Vision-Language Encoding Visual Encoder ResNet He et al. (2016)
Visual Encoder EfficientNet Tan and Le (2019)
Textual Encoder ViT Dosovitskiy et al. (2020)
Visual-Textual Encoder CLIP Radford et al. (2021)
Vision-Language Correlation Contrastive Objectives SimCLR Chen et al. (2020)
Generative Objectives MoCo He et al. (2020)
Generative Objectives Coca Yu et al. (2022)
Generative Objectives Flava Singh et al. (2022)
Alignment Objectives FIBER Dou et al. (2022)
Alignment Objectives DetCLIP Yao et al. (2022)
Pretraining Architecture Two-Tower CLIP Radford et al. (2021)
Two-Tower ALIGN Jia et al. (2021)
Two-Leg Coca Yu et al. (2022)
Two-Leg Flava Singh et al. (2022)
One-Tower CLIPPO Tschannen et al. (2022)
One-Tower OneR Jang et al. (2023)

enhance image feature learning (Radford et al., 2021).
ResNet, which is particularly prevalent in VLMs, incor-
porates skip connections across convolutional blocks to
prevent gradient issues and support deeper network archi-
tectures. 2) Transformer-based: Recent studies have
extensively explored the application of Transformers in
VLMs, especially ViT (Dosovitskiy et al., 2020), which
is a prototypical Transformer architecture for image
feature learning. It processes images by dividing them
into fixed-size patches, which are linearly projected and
position-embedded before encoding.

* Textual Encoder: Transformers and their variants
have become fundamental for text feature encoding. The
standard Transformer features an encoder-decoder frame-
work. Studies in VLMSs, such as CLIP (Radford et al.,
2021), typically employ this standard architecture with
slight adaptations.

3.2.2 Vision and language correlation

The core of VLMs is the understanding of the correlation
between paired vision-language data. Regarding this
issue, various pretraining objectives have been designed
to enhance the learning of vision-language features:

* Contrastive Objectives: Contrastive objectives
enable VLMs to acquire discriminative representations by
attracting paired samples while pushing away unpaired
ones within the feature space. In the case of VLMs,
image-text contrastive learning is typically leveraged,
which is achieved by minimising the symmetric image-
text infoNCE loss (Chen et al., 2020).

» Generative Objectives: This type of objective learns

the vision-language correlation feature by training
networks to generate image/text data via image generation
(He et al., 2021), language generation (Yu et al., 2022),
or cross-modal generation (Singh et al., 2022).

* Alignment Objectives: Alignment objectives are
designed to align the image-text features via global image-
text matching (Dou et al., 2022) or region-word matching
(Yao et al., 2022) on embedding space.

3.2.3 Pretraining architecture

The architecture for VLM pretraining mainly symbolises
how the vision and language processing branches and
embeddings are interconnected and communicated. The
most widely adopted frameworks in VLMs include two-
tower, two-leg and one-tower pretraining frameworks.

Specifically, the two-tower framework is commonly
utilized in VLMs (Radford et al., 2021; Jia et al., 2021)
employing separate encoders to process input images and
texts. In a variation, the two-leg framework (Yu et al.,
2022; Singh et al., 2022) includes extra multimodal
fusion layers, facilitating interaction between image and
text features. By contrast, one-tower VLMs (Tschannen
et al., 2022; Jang et al., 2023) integrate vision and
language processing into a single encoder, promoting
more efficient communication across different data
modalities.

While the pretraining and deployment of VLMs have
witnessed significant progress in recent years, the appli-
cation of current VLMs in real-life manufacturing scenar-
ios still faces challenges such as high computational
demands, the scarcity of high-quality data sets, and
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latency issues, which comprise the robustness and relia-
bility of VLMs in handling variations in real-world
production (Challenge 6.1).

4 VLM-based human-robot interactive
task planning and execution

The remarkable capabilities of LLMs and VLMs have
attracted the attention of the scientific community,
prompting extensive exploration into their potential appli-
cations in robotic interactive task planning, navigation,
and manipulation, as shown in Fig. 4. The integration of
LLMs and VLMs in these areas has shown promising
results, demonstrating their potential to revolutionise how
robots perform complex tasks. Moreover, their application
extends to industrial collaborative robots and other intricate
scenarios, showcasing their versatility and adaptability in
enhancing robotic functions and efficiency. These
advancements are paving the way for more sophisticated
and intelligent robotic systems capable of operating in

diverse and dynamic environments. This section sum-
marizes the most representative work of VLMs and
LLMs in task planning, navigation and manipulation,
including the foundation models used, success rates and
applications.

4.1 Vision and language task planning

Traditional task-planning methods often rely on predefined
rules and logical reasoning. However, these methods are
powerless when faced with a dynamic and complex real
world. The effectiveness and capability of recent VLMs
have attracted the attention of relevant researchers to
explore vision and language task planning. As shown in
Fig. 5, vision and language task planning refers to the
ability of a robot to complete task planning based on its
visual perception of the environment and its understanding
of the target task. LLMs and VLMs have strong logical
reasoning and visual perception capabilities, which
enable robots to complete task planning with a full under-
standing of the task scenario and human instructions, and

( Task planning )
W Vision and language-based
() . :
robotic task planning
N\ + J/
( Y5 Navigation )
i Vision and language-based
. robotic navigation
\§ J
e
Manipulation
Vision and language-based
robotic motion planning
J

Fig. 4 VLM-based human-robot interactive task planning, navigation, and manipulation.
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I want to put the cap on the
assembly to your right hand

Task-related objects and locations:

1. The cap
2. The assembly

Vision
3. Hand

Language

Model

4. Done

1.Pick up the cap
2.Place cap on the assembly

Task-related objects and locations:
1. Pick up the cap

2. Bypass the hands

3. Place cap on the assembly

Fig. 5 Vision and language task planning adapted with permission from Hu et al. (2023).
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promote effective communication and collaboration
between humans and robots. Table 3 lists the representative
results of the recent application of VLMs or LLMs to
robot task planning.

4.1.1 Task understanding and decomposition

Task understanding and decomposition is the first step in
task planning, which involves extracting task objectives
from natural language descriptions and decomposing
complex tasks into a series of manageable subtasks.
VLMs play a crucial role in this process as they can
extract rich semantic information from text and images.
For example, Song et al. (2023) combined the user’s na-
tural language instructions with the environment informa-
tion, and realized the understanding of tasks such as navi-
gation and manipulation based on LLMs and object
detectors. Zheng et al. (2024) adopted BERT and ResNet
to parse real scenes, and prompt LLM to decompose the
overall task into subtasks. Zhao et al. (2023b) studied the
use of VIiLD to perceive visual information to generate
scene descriptions, and used text descriptions as clues to
inform LLM to achieve adaptive robot grasping task
planning. The shortcomings of these studies lie in the fact
that spatial-based task understanding has not been achiev-
ed. Future research could focus on enhancing the process-
ing of environmental spatial information to achieve a
more comprehensive task understanding and planning.

4.1.2 Multimodal task information fusion

The fusion and alignment of the multimodal task informa-
tion is essential for the VLM to successfully comprehend
and break down the overall human—robot interactive task.

Front. Eng. Manag. 2025, 12(1): 177-200

The core of multimodal information fusion lies in how to
capture the associations between different modalities in a
unified representation space, and leverage the comple-
mentary information to provide a more comprehensive
semantic understanding for subsequent task planning. Fan
and Zheng (2024) aimed at a human-robot collaborative
assembly task, in which they leveraged the CLIP model
to parse visual information and LLM to comprehend
language instructions and generated a feasible robot
action sequence accordingly. Similarly, Song et al.
(2024) adopted YOLO and VLM to analyze and reason
about current social interactions, and generated immediate
optimal robot actions to guide the motion planner. In
addition, Rana et al. (2023) generated semantic graphs
based on three-dimensional scene graphs, retrieved task-
related semantic subgraphs through LLM, and then
performed subtask planning. Gu et al. (2023) converted
the real scene graph into a 3D conceptual scene structure
graph, and then converted it into a text description and
provided it to LLM, and used LLM to complete task
planning. The above studies focus on utilizing visual and
semantic interactions. For robots, the tactile modality can
make a contribution to understanding task requirements
better, facilitating task planning.

4.1.3 Action sequence generation

After the task decomposition and multimodal information
fusion, corresponding action sequences should be gener-
ated to fulfil the designated task. In this process, the
vision and language model can generate reasonable
action sequences directly from vision and language inputs
through end-to-end VLMs (Hu et al., 2023; Zhang et al.,
2024; Skreta et al., 2024). Action sequence generation

Table3 VLMs/LLMs in task planning

Method Model Success rate Application Year Ref.

Matcha ViLD, GPT-3 90.57% (custom data set) Table-top manipulation task 2023 Zhao et al. (2023b)
TaPA GPT-3.5, CLIP Mask RCNN  61.11% (custom data set) Indoor embodied task 2023 Wu et al. (2023)
SayPlan GPT-4 86.6% (Gibson) Indoor navigation 2023 Rana et al. (2023)
VILA GPT-4V 84.4% (custom task) Table-top manipulation 2023 Hu et al. (2023)
ConceptGraphs GPT-4, CLIP, DINO 97% (Replica) Indoor navigation 2023 Gu et al. (2023)
LLM-Planner GPT-3, object detector 51% (ALFRED) Indoor embodied task 2023 Song et al. (2023)

\ CLIP, GPT-4 93.30% (custom data set) human-robot collaboration assembly 2024  Fan and Zheng (2024)
NaVid BERT, EVA-CLIP, Vicuna-7B 92% (VLN-CE R2R) Indoor navigation 2024  Zhang et al. (2024b)
GameVLM YOLOWorld 83.30% (custom data set) Table-top manipulation 2024 Mei et al. (2024)

\ PaLM-E, LAVA 92% (RT-1) Table-top manipulation 2024 Du et al. (2023)
VLM-SocialNav YOLO, GPT-4V 100% (SCAND) Indoor navigation 2024 Song et al. (2024)
REPLAN GPT-4V 86.25% (RC) Table-top manipulation 2024 Skreta et al. (2024)
PaLM-E PaLM 82.5% (OK-VQA) Embodied task 2023  Driess et al. (2023)
RT-2 PaLM-E\PaLI-X 62% (custom data set) Embodied task 2023  Zitkovich et al. (2023)
\ GPT-3.5, resnet-50, BERT 85% (custom data set) Assembly task, pick and place. 2024  Zheng et al. (2024)
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needs to consider the context of the task, the dynamic
changes of the environment, and the path to achieving the
task goals. In this way, the system is able to generate
coherent and executable action steps, improving the effi-
ciency and reliability of task execution. In addition,
researchers from Google have conducted a series of work
to explore the perception-action end-to-end robot model,
including the development of a general and transferable
multi-decision agent by mixing specific data into the
input of the multimodal LLM (Driess et al., 2023), and
reformulating the LLM to directly output robot action
parameters in language format (Zitkovich et al., 2023),
which requires a lot of computing resources because the
novel LLM structure needs to be fully trained.

4.1.4 Long-horizon task planning

Long-horizon task planning refers to task planning over a
longer time span. This type of planning involves multiple
steps and stages, and requires consideration of the long-
horizon goals of the task and the coordination of interme-
diate steps. Unlike short-term task planning, long-horizon
task planning needs to deal with more uncertainty and
complexity, and usually requires more advanced strategies
and a more comprehensive environmental understanding.
Wu et al. (2023) fine-tuned the LLaMA network through
a triple of visual scenes, instructions, and corresponding
plans, and used it as a fine-tuned task planner to achieve
long-horizon planning for complex tasks. Mei et al.
(2024) proposed a decision and expert agent system
based on VLM, in which the decision agent is responsible
for planning tasks, and the expert agent evaluates these
task plans and resolves inconsistencies between different
agents by introducing zero-sum game theory to determine
the optimal solution. Du et al. (2023) took long-horizon
task instructions and current image observations as input
and output detailed multimodal (video and language)
long-horizon video plans. The program scales with
increasing computational budgets and can be synthesized
across different robotics domains, from multi-object
rearrangement to multi-camera dual-arm  dexterous

VLM

Please find a gear in the
warehouse and then go to the
cabinet to take a tape and then

put them in the workstation.

LLM

move_to_obj(“warehouse”)
move_to_obj(“cabinet”)
move_to_obj(“workstation”)
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manipulation, providing better task planning results.

A key challenge for VLM-based task planning is its
applicability in dynamic environments. Models such as
TaPA and GameVLM have shown high success rates in
long-term task planning by accurately encoding the
recognition features of static scenes. Du et al. generated
real-time long-term planning results based on current
image observations, which reflects the trend of combining
real-time scene parsing with dynamic planning. This
capability is key to realizing industrial scene applications,
because in industrial scenes, as production tasks proceed
dynamically, robot planning needs to be constantly up-
dated in real-time according to the scene. (Challenge 6.2).

4.2 Vision and language navigation

Vision and language navigation (VLN) refers to a robot's
ability to complete navigation tasks based on visual
perception of the environment and comprehension of
human natural language commands. In this task, the
agent is typically provided with the following informa-
tion: 1) Environmental representation: the agent's visual
perception in a 3D space, including images, point clouds,
and other forms of environmental representation; 2) Natu-
ral language instructions: a text description of how the
agent should move to reach the target location; 3) Initial
position: the agent's starting point in the environment.
The agent’s task is to navigate the environment and reach
the target location based on the natural language instruc-
tions. This process requires the agent to parse and
comprehend each step of the instructions, match them
with the visual perception of the environment, plan a
path, and take actions to complete the navigation task as
instructed. VLMs and LLMs play a crucial role in VLN
tasks as they can comprehend vision and language cues to
significantly enhance the agent's navigation performance
in complex environments. Based on different navigation
scenarios, we categorise these works into indoor naviga-
tion, outdoor navigation, and web navigation. The
general approach of VLM-based VLN is shown in Fig. 6.
VLMs are often employed as visual encoders to capture
semantic information from visual observations, while

£
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Warehouse

Fig. 6 General framework of vision and language navigation.
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LLMs are frequently utilized to understand human langu-
age commands and subsequent reasoning processes. The
recent representative works using VLMs or LLMs in
navigation tasks are summarized in Table 4.

4.2.1 VLM-based navigation in an indoor environment
Indoor navigation is widely applied in the field of domestic
robotics, with some work also involving human-robot
collaboration in industrial settings. Indoor VLN can assist
with assembly, help humans retrieve and place tools,
manage logistics distribution within the factory premises,
and inspect and maintain equipment.

In VLN, the most common tasks are simple instruction-
following tasks, in which a robot or virtual agent receives
detailed, step-by-step natural language instructions and
navigates through the environment to a specified target
location based on these instructions. These instructions
are typically clear and specific, describing each step of
the action path. Khandelwal et al. (2022) explored CLIP's
capabilities in embodied Al, discovering that CLIP's
feature representations encode these primitives more
effectively than ImageNet-pretrained backbones. They
proposed the EmbCLIP model, which achieved a 47%

Table 4 VLMs/LLMs in navigation
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task success rate in the RoboTHOR OBJECTNAYV Chal-
lenge 2021. Korekata et al. (2023) proposed a model
called SheFU, consisting of switching image embedder
and funnel transformer. This model could predict the
target object and destination separately and achieve a task
success rate of 83% in the ALFRED-fc data set. Hong
et al. (2023) presented Ego2-Map based on the ViT-B/
16 model from CLIP for VLN in continuous environm-
ents and could reach a 47% success rate in the R2R-CE
data set.

Apart from simple instruction-following tasks, some
works focus on remote embodied referring expression
tasks, which means the instructor only gives high-level
instructions, and the robot needs to figure out the clear
destination by continuously asking questions according to
the current state. Huang et al. (2023a) presented VLMaps
based on LSeg and GPT-3.5, in which they utilized GPT-
3.5 to generate Python code for robot navigation, and the
method reached a 62% success rate in their custom data
set. Qiao et al. (2023) utilized CLIP as a scene perceiver
and GPT-2 as an in-context learning model to build the
MiC model for remote embodied referring expression
task, which achieved a task success rate of 55.74% in the
REVERIE data set. Similarly, Gao et al. (2024) introduced

Navigation

environment Method VLM/LLM Success rate Application Year Ref.
Indoor EmbCLIP CLIP 47% (RoboTHOR Domestic service robot 2022  Khandelwal et al. (2022)
OBJECTNAV
Challenge 2021)
SHeFU Switching Image  83.1% (ALFRED-fc) Domestic service robot 2023 Korekata et al. (2023)
Embedder, Funnel
Transformer
Ego2-Map CLIP 47% (R2R-CE) Domestic service robot 2023 Hong et al. (2023)
VLMaps LSeg, GPT-3.5 62% (custom dataset) Domestic service robot 2023 Huang et al. (2023a)
MiC GPT-2, CLIP 55.74% (REVERIE) Remote embodied referring 2023 Qiao et al. (2023)
expression, domestic
service robot
CKR+ CLIP 23.13% (REVERIE)  Remote embodied referring 2024 Gao et al. (2024)
expression, domestic
service robot
NavGPT GPT-3.5, BLIP-2 34% (R2R) Domestic service robot 2024 Zhou et al. (2024)
LANA+ CLIP 70.1% (R2R) Instruction following and 2024 Wang et al. (2024d)
generation, domestic
service robot
ACK CLIP 59.1% (REVERIE) ~ Remote embodied referring 2024 ~ Mohammadi et al. (2024)
expression, domestic
service robot
CONSOLE ChatGPT, CLIP 72% (R2R) Domestic service robot 2024 Lin et al. (2024)
DISH CLIP 44.3% (R2R) Domestic service robot 2024 Wang et al. (2024a)
A vision Al-based HRC GPT-4 \ Human-robot collaboration ~ 2024 Liu et al. (2024)
assembly approach
A vision and language GPT-3.5 \ Human-robot collaboration ~ 2024 Wang et al. (2024b)
cobot navigation approach
Outdoor LM-Nav CLIP, GPT-3 80% (custom dataset) Urban VLN 2022 Shah et al. (2022)
VELMA CLIP, GPT-4 23.1% (Map2seq) Urban VLN 2024 Schumann et al. (2024)
VLN-VIDEO GPT-2 31.7% (Touchdown) Urban VLN 2024 Li et al. (2024)
Website WebVLN GPT-3.5, BLIP-2 34.76% (WebVLN-vl)  Web Navigation and 2024 Chen et al. (2024)

Question—Answering
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CKR + based on CLIP, which could achieve a 23.13%
success rate in the REVERIE data set. Wang et al.
(2024d) devised a CLIP-based LANA + model which
could mimic the human process of finding a path through
iterative question-and-answer interactions and reached a
success rate of 70.1% in the R2R data set. Mohammadi
et al. (2024) introduced the ACK framework, which
utilizes commonsense information structure as a spatio-
temporal knowledge graph to enhance agent navigation.
Within this framework, the CLIP model was employed to
gather and prioritise the most relevant knowledge conc-
erning the scene and identified objects. In the REVERIE
data set, ACK obtained a 59.1% task success rate.

Many works also aim to explore the reasoning capabili-
ties of LLMs and apply them to task planning in VLN.
These research efforts aim to harness the sophisticated
natural language understanding and generation abilities
of LLMs to improve the decision-making processes
involved in navigating complex environments. By inte-
grating LLMs with visual information, researchers seek
to develop advanced navigation systems capable of inter-
preting and responding to dynamic scenarios. Zhou et al.
(2024) developed a purely LLM-based VLN system
based on GPT-3.5 and BLIP-2. This work innovatively
explored GPT's zero-shot reasoning capabilities in
complex environments and achieved a 34% task success
rate on the R2R data set without any training. Similarly,
Lin et al. (2024) proposed CONSOLE based on ChatGPT
and CLIP, and this model gained a 72% success rate in
the R2R data set.

Furthermore, VLMs can be leveraged to formulate
strategies for robot learning in VLN tasks. This involves
using VLMs to generate and optimise action plans that
guide robots through various navigation challenges. The
integration of VLMs in robot learning not only enhances
the robots' ability to understand and process visual and
linguistic cues but also improves their adaptability and
performance in real-world applications. Wang et al.
(2024a) introduced an RL framework for discovering
intrinsic subgoals via hierarchical (DISH) RL in which
CLIP’s image encoder was applied for visual feature
extraction. This method overcame the label annotation
problem in reinforcement learning and achieved a 44.3%
task success rate in the R2R data set.

While models like EmbCLIP and SheFU demonstrate
high task success rates by effectively encoding visual
features and predicting target locations, approaches such
as VLMaps and MiC emphasize interactive question-
asking to improve task completion in more ambiguous
scenarios. This highlights a common trend toward inte-
grating visual perception with dynamic linguistic interac-
tion, although the varying success rates underline the
ongoing challenge of achieving consistency across differ-
ent data sets and environments.

In the industrial sector, some works have also introdu-
ced LLM-based VLN for HRC tasks. Liu et al. (2024)

utilized GPT-4 along with 3D object reconstruction and
pose estimation methods in human-robot collaborative
assembly tasks, while Wang et al. (2024b) built a cobot
navigation framework using GPT-3.5 combined with
other visual methods to assist operators in tool retrieval
and placement in HRC. However, while these advance-
ments showcase promising progress, the variability in
success rates across different models and data sets high-
lights a critical challenge in performance consistency, ind-
icating a need for improved generalisation and adaptability
in dynamic real-world environments (Challenge 6.3).

4.2.2 VLM-based navigation in outdoor environment

Compared to indoor VLN, the outdoor VLN environment
is typically more open and expansive, with fewer
constraints on movement. Outdoor landscapes can
include a variety of terrains, weather conditions, and
lighting variations. The presence of dynamic elements
such as vehicles and pedestrians adds to the complexity.
The applications of outdoor VLN include autonomous
driving, robotic delivery, smart city management, rescue
operations, and environmental monitoring. In the industrial
sector, outdoor VLN can also be employed for factory
security patrols and logistics distribution between factory
sites. Shah et al. (2022) presented a system called LM-
Nav based on CLIP and GPT-3 for long-horizon navigation
through outdoor and complex environments and achieved
an 80% success rate in their custom data set. Similarly,
Schumann et al. (2024) proposed VELMA, a model
based on CLIP and GPT-4, which uses verbal descriptions
of trajectories and visual environment observations as
contextual prompts for the next action, and they achieved
a task success rate of 23.10% in the Map2seq data set.
Li et al. (2024) introduced VLN-VIDEO, utilizing urban
driving videos combined with automatically generated
navigation instructions and actions to enhance outdoor
VLN performance. GPT-2 was used to filter out
templates with low generation probability. They gained a
31.7% success rate in the Touchdown data set. Despite
these advancements, the significant variation in success
rates indicates that outdoor VLN systems must address
the challenges of diverse environmental conditions and
dynamic elements more effectively to achieve reliable
performance in real-world applications (Challenge 6.3).

4.2.3 VLM-based navigation in web environment

Apart from VLN in real-world environments, Chen et al.
(2024) proposed a VLN model for web environments.
They utilized GPT-3.5 and BLIP-2 to construct a
WebVLN model capable of answering questions based
on web content and automatically navigating to the
required web pages. They also created a WebVLN-vl
data set, where the WebVLN model achieved a task
completion rate of 34.7%. This is a newly proposed task
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that has not yet been explored in the industrial sector, but
it has potential applications in industrial QA systems.

4.3 Vision and language manipulation

VLMs have also been frequently leveraged in robotic
manipulation tasks to enable robots to perform physical
tasks by parsing and understanding visual inputs (such as
images or videos) and language inputs (such as instructions
or descriptions). This type of interaction enables robots to
execute more flexible and adaptive operations in complex
environments. The methodology in manipulation is similar
to navigation; it also requires environmental representa-
tion, natural language instructions, and the robot's initial
state. VLMs and LLMs can accomplish joint reasoning
for visual perception and language comprehension, while
also facilitating further trajectory planning. Recent works
about VLMs/LLMs in robotic manipulation are provided
in Table 5.

For vision and language manipulation algorithms,
current approaches primarily utilize VLMs for scene

Table 5 VLMs/LLMs in manipulation

understanding and LLMs for natural language command
comprehension, combined with planning algorithms to
generate trajectory key points or dense waypoints for the
end-effector, as illustrated in Fig. 7. These methods can
be categorised into two types: one involves designing
complex prompts for VLMs and LLMs to directly generate
trajectories, referred to as planning-based vision and
language manipulation, and the other employs VLMs
and LLMs to assist in policy generation within robot
learning to accomplish manipulation tasks, known as
learning-based vision and language manipulation.
Regarding application scenarios, most work applying
VLMs/LLMs to robotic manipulation focuses on tabletop
household tasks, with some studies extending their use to
industrial settings.

4.3.1 Planning-based vision and language manipulation
for tabletop household tasks

Planning-based vision and language manipulation is an
approach in robotic manipulation where VLMs and

Method VLM/LLM Success rate Application Year Ref.
S t, tablet .
CLIP-SemFeat CLIP 58.8% (LVIS) cene rﬁggg‘e’ﬁg’f;ksa €P 2022 Goodwin et al. (2022)
Act3D CLIP ResNet50 83% (RLBENCH) Tabletop household tasks 2023 Gervet et al. (2023)
Contact-rich manipulation, .
CALAMARI CLIP 84% (RLBENCH) tabletop household tasks 2023 Wi et al. (2023)
GNFactor Stable diffusion, CLIP 31.7% (RLBENCH) Tabletop household tasks 2023 Ze et al. (2023)
Grounding entity transformer (Get), Pick and place task, tabletop .
Gved Setting entity transformer (Set) 50.98% (VGPD) household tasks 2023 Kim et al. (2023a)
MOO Owl-ViT ~50% (RT-1) Tabletop household tasks 2023 Stone et al. (2023)
PaLM-E PaLM-E 66.1% (OK-VQA) Tabletop household tasks 2023 Driess et al. (2023)
SMS ViLD, BLIP-2, SAM 41.7% (custom dataset) Mechanical search, tabletop 553 gpoa ot al (2023)
d ’ household tasks
Voxposer GPT-4, OWL-ViT, SAM 88% (RLBENCH) Tabletop household tasks 2023 Huang et al. (2023b)
Vision-language guided CLIP, GPT-4 93.3% (custom dataset) Human-robot collaboration ~ 2024  Fan and Zheng (2024)

robotic planning

VLM

Fetch the gear.
Please also watch
out for that bear box

LLM

LLM generate code to interact with VLM

def affordance_map():
msize = (100,100,100)
map = np.zeros(msize)
gears = detect(‘gear’)
gear = gears[0]
X,y,Z = gear.occupancy_grid
map[x,y,z] = 1
returen smooth(map)

def constraint_map():
msize = (100,100,100)
map = np.zeros(msize)
bear_box = detect(‘bear_box’)
X,y,Z = bear_box.occupancy grid
map[x,y,z] =—
returen smooth(map)

Value maps

Fig. 7 General approach of vision and language manipulation adapted with permission from Huang et al. (2023b).
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LLMs are utilized to generate precise movement trajecto-
ries for robotic tasks. This method involves the design of
complex natural language prompts that instruct LLMs to
produce detailed paths that the robot's end-effector should
follow. Goodwin et al. (2022) proposed a novel method
called CLIP-SemFeat for scene rearrangement in Tabletop
household tasks by leveraging CLIP to solve cross-
instance matching problems, and have reached a 58.5%
task success rate in the LVIS data set. Driess et al.
(2023) introduced a VLM for robot manipulation called
PalLM-E, which can translate knowledge from the vision-
language domain into concrete reasoning, enabling robots
to plan in environments with complex dynamics and
physical constraints and to answer questions about the
observable world. PaLM-E could achieve a 66.1% task
success rate in the OK-VQA data set. Sharma et al.
(2023) presented SME consisting of ViLD, BLIP-2 and
SAM for mechanic searching for tabletop household
tasks, and could reach a 41.7% task success rate in the
custom data set. Huang et al. (2023b) proposed a novel
framework named Voxposer for model-based planning.
This framework utilized ViLLD for object detection, SAM
for semantic segmentation, and GPT-4 for reasoning and
planning. VoxPoser's planning precision reached the
waypoint level of robotic arm movement trajectories,
making manipulation tasks highly flexible. It achieved an
88% task success rate in the RLBENCH tasks. While
these approaches demonstrate significant progress in
household settings, the current methods often lack the
precision required for complex industrial tasks, under-
scoring the need for further research to enhance motion
planning precision and extend their applicability to indus-
trial environments (Challenge 6.4).

4.3.2 Learning-based vision and language manipulation
for tabletop household tasks

Learning-based vision and language manipulation is an
approach where VLMs and LLMs are used to assist in
generating policies for robot learning. Instead of directly
generating trajectories, this method focuses on developing
policies that enable robots to learn and perform manipula-
tion tasks through experience and interaction with the
environment. Gervet et al. (2023) proposed Act3D, utiliz-
ing CLIP ResNet50 and leveraging their shared vision-
language feature space to interpret instructions and foun-
dational references for learning-from-demonstration
tasks. They achieved an average success rate of 83% in
RLBENCH tasks. Wietal. (2023) introduced CALAMARI
for contact manipulation in household environments
based on CLIP and obtained a success rate of 90% in the
wipe_desk task, 84% in the sweep to dustpan task, and
60% in the push_putton task in the RLBENCH environ-
ment. Ze et al. (2023) presented a GNFactor model based
on stable diffusion and CLIP for imitation learning in
robot manipulation tasks and gained an average success

rate of 31.7% in 10 tasks in RLBENCH. Kim et al.
(2023a) proposed GVCCI consisting of Grounding Entity
Transformer (Get) and Setting Entity Transformer (Set)
for pick and place actions, and obtained a task success
rate of 50.98% in Visual Grounding on the Pick-and-
place Instruction (VGPI) data set. Stone et al. (2023)
introduced MOO in which Owl-ViT is applied to object-
identifying information from the language command and
image. They have reached about a 50% task success rate
in the RT-1 data set. This section focuses on the task of
manipulation, with more detailed discussions on learning-
based methods to be presented in Section 5. Despite
notable advancements, the variability in task success rates
across different models and tasks indicates that these
learning-based approaches need further refinement to
enhance adaptability and precision, particularly for more
complex and varied manipulation tasks beyond household
environments (Challenge 6.4).

4.3.3 Vision and language manipulation for industrial
tasks

It is found that most works regarding vision-language
robotic manipulation are based on RLBENCH and thus
only consider household tasks. The investigations of
VLM-based manipulation are still quite rare in the indus-
trial sector, and current applications have been limited to
simple planning-based methods. Fan and Zheng (2024)
innovatively introduced a VLM-based manipulation
method in HRC tasks. They proposed a vision-language-
guided robotic planning approach for robotic action plan-
ning for HRC assembly, and have reached a 93.3%
success rate in their custom industrial data set. In the
industrial sector, VLM-based manipulation, in addition to
completing HRC assembly tasks, has potential value in
warehouse management, equipment maintenance, flexible
production line adjustments, and item sorting, and is
worth further exploration.

It is important to note that while planning-based methods
like CLIP-SemFeat and Voxposer excel in task success
rates for household tasks, they often struggle with the
precision required for industrial applications. In contrast,
learning-based approaches such as Act3D and CALA-
MARI show promise in adaptability through learning
from interactions but display variability in success rates
across different tasks. Identifying these trends and
common challenges suggests a potential for integrating
the strengths of both approaches to improve precision and
adaptability, particularly in transitioning from household
to industrial applications. This synthesis highlights a crit-
ical trend toward developing hybrid models that can
bridge current gaps, offering a more robust solution
across varied environments. The adaptation of VLM-
based manipulation from household to industrial applica-
tions faces challenges such as the need for higher preci-
sion, robustness in diverse conditions, and integration
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with existing industrial systems, indicating significant
opportunities for future research to bridge these gaps
and fully realize its potential in industrial settings (Chal-
lenge 6.4).

5 VLM-based human-guided skill transfer
and robot learning

Another crucial challenge in human-robot collaborative
manufacturing is to enable robots to effectively learn new
skills and actions, especially in unstructured and dynamic
environments where pre-programmed movements are in-
sufficient. One potential solution is to allow robots to ac-
quire new skills from human demonstrations (Yin et al.,
2024). Learning from demonstration, or imitation learn-
ing, aims to enable robots to extract human behaviors and
decision-making processes. This encompasses a range of
competencies, including operational skills, sequence
planning, adaptability to different scenarios, and even the
ability to handle uncertainty and weigh pros and cons.

Compared to traditional algorithms, VLM-based skill
transfer has attracted increasing attention due to its power-
ful in-context learning capabilities. VLM not only inte-
grates the efficient feature representation capabilities of
both vision and language, but also, due to its pre-training
on large-scale data, possesses strong generalisation abil-
ity. This allows it to perform exceptionally well in new
tasks and environments, reducing the need for extensive
demonstration data. Hence, the advancement of VLMs
has enabled robots to exhibit enhanced logical reasoning
and compositional generalisation abilities in manufactur-
ing tasks.

In this section, the latest progress in VLM-based
human-guided skill transfer and robot learning are elabo-
rated, as illustrated in Fig. 8. Our focus is primarily on
literature that leverages both vision and language modali-
ties to collect human demonstrations and facilitate skill
learning. The main content is divided into two parts: 1)
high-quality human demonstration gathering approaches
and 2) VLM-based robot learning algorithms and archi-
tectures.
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5.1 VLM-based human demonstration collection

Obtaining human demonstrations has long been a crucial
research focus in enabling robots to acquire human skills.
The integration of multiple modalities, such as vision and
language, cannot only help robots better comprehend
human demonstrations but also enable them to learn
skills more robustly in partially observable environments.
Figure 9 showcases the primary demonstration methods,
highlighting the innovative approaches to human teaching
enabled by vision language integration. As shown in
Table 6, the main benefits of including language in the
demonstration process have been summarized through
related works. Specifically, compared to passive video
observation, integrating the language modality can align
more closely with human cognition, improve comprehen-
sion and generalisation capabilities, extract explicit rules,
enhance human-robot interaction, and support the learning
of more complex manipulation skills.

5.1.1 Align with human cognition

Humans typically learn new skills by combining the ob-
servation of demonstrated actions with listening to related
verbal explanations. Thus, integrating video with textual
or spoken information can more closely mimic human
learning processes. Azagra et al. (2020) designed an
incremental learning pipeline. Through natural user inte-
ractions (such as pointing, showing, and verbal descrip-
tions), the robot utilizes an RGB camera to capture image
data and combines skeleton detection and speech recogni-
tion technologies to incrementally learn and update object
models. This enables robots to gradually learn to accurately
identify and understand different objects in dynamic and
diverse interactive environments, just like humans. Ding
et al. (2023) proposed a system called Embodied Concept
Learner (ECL), enabling robots to emulate human capa-
bilities in learning visual concepts and understanding
geometric mapping within an interactive 3D environ-
ment. The robotic agent, akin to a baby, can acquire long-
term, interpretable, unsupervised semantic and depth
learning through interactions with humans.
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Fig. 8 VLM-based human-guided skill transfer and robot learning.
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Fig. 9 VLM-based human demonstration collection: (a) Human-like teaching methods (Azagra et al., 2020), including point, show, and
speak; (b) Vision-language fusion and goal parsing (Ding et al., 2023), to assist robot in learning concepts through rich information and
self-supervised learning; (c) Gesture-based teaching and teleoperation methods (Halim et al., 2022), to provide natural interactions for
direct programming of the robot; (d) human demonstration at scale (Ramrakhya et al., 2022), to learn the skill preferences of object navigation

from different human agents.

Table 6 VLM-based human demonstration collection

Category Description

Demonstration method

Tasks/Application Ref.

Align more closely with
human cognition

Incremental Learning of Object Models
from interactive human demonstration

Self-supervised learning of concepts and RGB observation, Language
command

mapping through instruction following
in an interactive 3D environment

Improve generalisation
capability

Improve robot command
generation accuracy

Extract implicit rules
collect large-scale demonstrations

Behaviour-informed state abstractions Video, language specification Tabletop manipulation tasks

via language model queries to capture
human task-relevant preferences

Multimodal no-code robotic
programming

Enhance human-robot
interaction

Multimodal demonstration interface

Multimodal human demonstration
collection system

Support more complex
manipulation skill learning

RGB camera, microphone

Video, Key frame caption

A virtual teleoperation infrastructure to RGBD camera, GPS+compass
sensor, Task instruction

RGB-D camera, Microphone

3D camera, speech, hand

Motion capture, depth camera,
video recording, speech

Recognise and understand
object

Azagra et al. (2020)

Routine manipulation tasks Ding et al. (2023)

Routine manipulation tasks ~ Yin and Zhang (2023)

Navigation, pick and
place tasks

Ramrakhya et al. (2022)

Peng et al. (2024)

Line movement, zigzag
movement, contour
movement, etc.

Halim et al. (2022)

Pick and place tasks Lu et al. (2022)
guiding
Complex tool Shukla et al. (2023)

manipulation skills

5.1.2 Improve generalisation capability

In learning from human demonstration, purely video-
based passive observation may lead robots to struggle to
capture the underlying intentions and semantics of
actions. In contrast, language information can provide
crucial contextual details, aiding robots in better under-
standing the purpose and logic of demonstrations, thereby
enhancing learning accuracy and generalisation capabili-
ties. For instance, Yin and Zhang (2023) presented a
framework that integrates key frame extraction with
multimodal information (text caption) fusion, significantly
improving the accuracy of robot command generation.

Therefore, when integrated with an affordance detection
network and a motion planner, this framework enables
robots to effectively reproduce the tasks demonstrated.

5.1.3  Extract implicit rules

When robots learn from human demonstrations, they can
acquire implicit rules and subtle habits that are difficult to
explicitly abstract into clear guidelines, unlike auton-
omous learning methods such as reinforcement learning
(RL). By integrating visual and linguistic inputs, robots
are better equipped to uncover these latent policy
patterns. Ramrakhya et al. (2022) discovered that imitation
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learning (IL) enables robots to learn effective object navi-
gation skills from humans—such as peeking into rooms,
checking corners for small objects, and turning around to
get a panoramic view. This surpasses the limitations of
traditional reinforcement learning (RL) methods, which
require intricate reward engineering to induce such
behaviors. Peng et al. (2024) proposed a Preference-
Conditioned Language-Guided Abstraction (PLGA)
method, using language model (LM) queries to capture
implicit human preferences in tasks. For instance, observ-
ing behavior changes like avoiding electronics during
“throwing away a jar” allows the robot to infer and train
strategies based on these abstracted preferences. Notably,
robots may inadvertently replicate undesirable human
biases when learning implicit rules, an issue that warrants
careful consideration in future research.

5.1.4 Enhance human-robot interaction

Compared to passive video observation, leveraging robot
teleoperation to gather demonstration data is a more accu-
rate and efficient approach. This natural teaching method,
which combines action demonstration and language inter-
pretation, leads to more intuitive and effective
human-robot interaction. By grounding the learning
process in multimodal interactions, Halim et al. (2022)
introduced a no-code robotic programming system
designed for beginners. This approach utilizes a visual
system that enables users to convey spatial information,
including 3D points, lines, and trajectories, through hand
and finger gestures. Additionally, a speech recognition
system aids users in setting robot parameters and engaging
with the robot's state machine. Lu et al. (2022) also
proposed a multimodal demonstration system integrating
natural language instruction, visual observation, and hand
guiding to let robot learn task comprising goal concepts,
task plans, and basic actions, which can be applied to
pick-and-place tasks. However, some interaction
approaches may introduce additional implementation
costs and system complexity. It is essential to consider
the scalability and practicality of interaction methods to
ensure the applicability across broader real-world scenar-
i0s.

5.1.5 Support more complex manipulation skill learning

Acquiring complex manipulation skills often necessitates
the use of multimodal information. Humans not only
grasp the actions required for a skill, but also understand
the various states, state transitions, and constraints associ-
ated with the task. Shukla et al. (2023) introduced a mul-
timodal framework supporting data collection from various
modalities, including speech, gestures, motion, video, and
3D depth data. This framework integrates visual and
linguistic data to gather rich human demonstration data

for learning intricate tool operation skills, such as granular
media transport tasks. It is evident that, although visual
and linguistic cues have been widely utilized to facilitate
human-robot skill transfer, the integration of additional
multimodal sensory data remains underexplored (Chal-
lenge 6.5).

5.2 VLM-based robot learning from human
demonstrations

In this section, we delve into the details of the learning
mechanisms employed by researchers utilizing the rich
information from vision-language integrated human
demonstration data. This exploration encompasses a
spectrum of encoding, decoding, and learning strategies.
The learning process is systematically divided into three
key areas: vision-language fusion, the combination of
imitation and reinforcement learning, and enhancements
in adaptability. Figure 10 illustrates a typical application
for each of these three subdomains. Table 7 provides a
detailed account of the learning methods, training data
sets, and evaluation metrics utilized in the reviewed
articles.

5.2.1 Vision-language fusion and multimodal learning
Vision-language fusion and multimodal learning offer
significant advantages in the field of robotic manipulation
and human—robot interaction. By integrating visual and
linguistic information, these approaches enable robots to
understand and execute complex tasks with greater accu-
racy and flexibility. The fusion of multiple modalities
allows for a richer and more comprehensive understanding
of the environment, facilitating more robust decision-
making processes.

For example, Shao et al. (2021) presented a new imitation
learning framework combining natural language instruc-
tions and visual inputs for enhanced robot manipulation,
offering improved generalisation, efficient learning, and
handling of complex manipulations. Evaluation results
show that the multi-task strategy performs well in terms
of success rate and handling complex tasks. Wang et al.
(2022b) put forward a novel Teaching-Learning-Prediction
(TLP) framework that enables robots to predict human
intentions in hand-over tasks using multimodal data,
including natural language and wearable sensor inputs.
Leveraging the extreme learning machine (ELM) algo-
rithm, the TLP framework significantly improves predic-
tion accuracy and stability compared to traditional meth-
ods, facilitating more efficient human-robot collabora-
tion. Hori et al. (2023) put forward a multimodal imitation
learning approach that leverages videos, audio, and text
to generate robot action sequences using an audio-visual
Transformer (AVTransformer). This method integrates
dynamic motion primitives (DMPs) and style transfer
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Fig. 10 VLM-based robot learning from human demonstrations, which is primarily divided into three sections: Vision language fusion
and multimodal learning (Wang et al., 2022b), IL and RL combination (Trick et al., 2022), and task and environmental adaptability
enhancement (Nair et al., 2022).

Table 7 VLM-based robot learning from human demonstrations

Description Method Training data Evaluation Ref.
Multimodal Learn manipulation BERT, ResNet-18, 78 tasks from “Something- Multi-task success rate 76.3% Shao et al. (2021)
data fusion concept DDPG, Batch RL Something” dataset

(video, task description)
Predicting human TLP model, Extreme 25000 Multimodal data from Prediction accuracy 98.5%, Wang et al. (2022b)

intentions Learning Machine five participants time efficiency improved
Action sequence AVTransformer, CLIP  Epic-Kitchen-100, YouCooklI, Success rate 32 %, improves Hori et al. (2023)
acquisition QuerYD, and in-house DMP sequence quality
instruction video datasets by 2.3 times
CSATO multi-task Transformer RLBench including RGB image, Success rates of 90.7% and 83.9%  Han et al. (2024)
skill learning architecture depth map, instruction, in single-task and multi-task
action sequence scenarios
IL and RL Zero-shot task BC-Z VR teleoperation data, human 24 unseen manipulation tasks Jang et al. (2022)
combination generalisation video, task language strings with 44% success rate
Interactive MIA-IRL Train the classifier with collected Convergence time, success rate,  Trick et al. (2022)
reinforcement learning speech and gesture and robustness are
significantly higher.
RoboCLIP: one demo  S3D VLM, RL (PPO) HowTol100M to pretrain VLM, 2-3 times higher zero-shot Sontakke et al. (2024)
to learn policies MetaWorld for simulation performance than
competing IL methods
Adaptability R3M: pretrained visual ResNet-18, ResNet-34 Egocentric 4D Average success rate 56% Nair et al. (2022)
enhancement representation
Learning Object Spatial ~ Spatial probability NUSCENES dataset and Accuracy 91.3% Yu et al. (2023)
Relationship models, SVM, GPT3 tabletop scenes
GNFactor multi-Task  Stable Diffusion, CLIP 10 tasks in RLBench Success rate 31.7% Ze et al. (2023)
skill learning
User directed CLIP, PerAct, RLBench including RGB-D, text 13% improvement in task Winge et al. (2024)
hierarchical learning GPT-4, Bard instruction, voxel representation success rates
SHOWTELL GPT-4,ViLD, BLIP-v2 Text instruction, RGB data, hand Success rate over 85%, Murray et al. (2024)
detection, hand-object interaction out-perform GPT4-V

learning to enhance performance. CSATO algorithm decoder to model correlations among instructions,
(Han et al.,, 2024) employed a visual-language fusion current, and historial visual observations, generating
network, a token reduction network, and a Transformer autoregressive action predictions.
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5.2.2 Combination of IL and RL

The combination of imitation learning and reinforcement
learning offers powerful synergy, significantly enhancing
task generalisation and zero-shot learning capabilities in
robotic systems. Imitation learning provides a strong
foundation by allowing robots to quickly acquire
complex behaviors from human demonstrations, effec-
tively reducing the initial learning curve and enabling
rapid adaptation to new tasks. Reinforcement learning
complements this by refining and optimising the learned
behaviors through trial and error, guided by reward
signals. By integrating the strengths of both approaches,
robots can achieve robust task generalisation, applying
learned strategies to a wide array of scenarios with minimal
retraining.

Jang et al. (2022) combined a multilingual sentence
encoder for vision-based robotic manipulation. Using the
BC-Z model, it trains on a large data set of human
demonstrations, achieving success in zero-shot task
generalisation and unseen task performance. Trick et al.
(2022) introduced an interactive reinforcement learning
(IRL) approach that leverages the Bayesian fusion of
multimodal advice. The proposed method, MIA-IRL,
enables a robot to learn the pancake-making task from
various initial states by incorporating human-provided
multimodal guidance, such as speech and gestures.
Experimental results demonstrate that the MIA-IRL
approach achieves faster convergence and greater robust-
ness in this task compared to existing methods. Sontakke
et al. (2024) presented RoboCLIP, an innovative imitation
learning method that uses pretrained VLMs to generate
reward functions from a single demonstration (video or
text). It reduces the reliance on expert demonstrations and
complex reward engineering, leading to superior zero-
shot performance and efficient fine-tuning. However, the
challenges of integrating these methods remain signifi-
cant, including the complexity of designing effective rew-
ard functions for various tasks in reinforcement learning,
as well as ensuring data and training environment consis-
tency between reinforcement and imitation learning.

5.2.3 Task and environmental adaptability enhancement

Other applications also explore the potential of VLM in
learning spatial relationships to further improve task and
environmental adaptability of robots. Specifically, Nair
et al. (2022) presented R3M, a visual representation
model pretrained using a combination of time-contrastive
learning, video-language alignment, and L1 sparsity
penalties, which significantly enhances data-efficient
imitation learning for robotic manipulation tasks. By
leveraging the diverse human video data set Ego4D, R3M
outperforms state-of-the-art visual representations like
CLIP and MoCo, demonstrating superior performance in

unseen environments and tasks. Yu et al. (2023) proposed
a method enabling robots to learn and recognize 3D
spatial relationships between objects. By leveraging
image and language demonstrations, the method const-
ructs new spatial relationship probability distribution
models, thereby allowing robots to execute tasks more
accurately in complex environments. Regarding visual
representation and encoding, Ze et al. (2023) introduced
GNFactor, a visual BC agent for multi-task robotic manip-
ulation concentrating on improved generalisation abili-
ties. It leverages the Stable Diffusion model to encode
semantic information into 3D voxel representations,
enabling visual reconstruction and language-conditioned
action prediction. Winge et al. (2024) proposed a hierar-
chical robot learning framework, in which end users can
provide text instructions related to observation (spatial
scenario). Combined with the VLM Bard's capability to
automatically decompose complex tasks into intermediate
skills, robots can effectively learn to execute high-level
tasks by understanding the environment and building
from basic actions. A highly modular neural-symbolic
framework is also introduced by Murray et al. (2024), for
synthesizing robotic skills from visual demonstrations
and natural language instructions. Current methodologies
often assume an idealised training environment, where
objects are expected to maintain reasonable initial poses
and training steps are standardised. However, when these
algorithms are applied in real-world scenarios, they face a
much broader spectrum of uncertainties, rendering them
insufficient without human oversight. This reliance on
continuous human intervention for monitoring and
adjustment severely limits their practical implementation
in real-world applications (Challenge 6.6).

6 Challenges and future perspectives

Although preliminary explorations of the application of
VLMs have demonstrated impressive capabilities, espe-
cially within the human-robot collaborative manufacturing
area, many technical issues have not yet been well cons-
idered or addressed, which largely constrains the applica-
bility of VLMs in practical real-life environments. In this
section, some key challenges and corresponding future
directions are discussed in the hope of motivating further
research endeavors for VLM-based HRC systems.

6.1 Data and computation-efficient training and
deployment of VLLMs

The pretraining and deployment of VLMs in practical
manufacturing scenes face significant challenges, primar-
ily due to the high computational demands and extensive
data requirements for training these models. Obtaining
high-quality, annotated data sets in diverse manufacturing
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environments is costly and time-consuming. Addition-
ally, effective HRC applications require real-time proc-
essing, but VLMs often face latency issues. Meanwhile,
in real-life production scenarios, VLMs must also be
robust and reliable to handle variations and ambiguities
effectively. Enhancing robustness through rigorous tes-
ting and incorporating fail-safe mechanisms is essential
for reliable deployment. Potential pathways to addres-
sing these issues include efficient training strategies,
model optimisation techniques such as pruning and quan-
tisation, and robust data collection methods. These
approaches are essential for the practical and effective
training and deployment of VLMs in HRC manufacturing
applications.

6.2 Vision and language task planning in dynamic
environments

One of the significant challenges in VLM-based task
planning is the current focus on static scenes, which
limits the applicability of these models in dynamic envi-
ronments. Real-time task planning in dynamic scenes
remains an unresolved issue. To address this, future
research could explore the integration of Simultaneous
Localization and Mapping (SLAM) technology. SLAM
can provide real-time updates of the environment,
enabling VLMs to adapt and plan tasks dynamically. This
integration would allow robots to navigate and perform
tasks in ever-changing environments, significantly enhan-
cing their utility and robustness. Additionally, improving
the computational efficiency of VLMs to handle real-time
data and developing more sophisticated algorithms for
dynamic task planning are crucial areas for future explo-
ration.

6.3 Real-time 3D scene reconstruction and segmentation
for vision and language navigation

Despite the significant advancements in VLN brought
about by VLMs and LLMs, their application in industrial
manufacturing remains limited. Current navigation plan-
ning relies on pre-established static maps, but in real-
world scenarios, both humans and machines can be
mobile. Therefore, real-time updates of 3D scene maps
are crucial. However, most 3D reconstruction and
segmentation techniques rely on RGB-D video frames for
point cloud reconstruction and color rendering, which
results in long inference times and significant delays in
real-time reconstruction. This limitation restricts their
application in real industrial settings. Achieving fast, low-
latency real-time 3D reconstruction and segmentation is a
critical research direction for the future. A potential solu-
tion involves combining large models with lightweight
networks and dynamic tracking by human operators,
enabling efficient, low-latency 3D scene updates and
adaptability in industrial environments.
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6.4 Motion planning with high precision for vision and
language manipulation

VLM and LLM-based robotic manipulation is a highly
active research topic in the fields of Al and robotics.
However, the focus has predominantly been on household
tasks, with limited work in industrial applications. One
reason is that the planning precision of LLMs is not yet
sufficient for industrial requirements. Currently,
VLM/LLM-based robotic manipulation can only perform
tasks such as “picking up a cup and pouring water,” but
assembly tasks are much more complex and precise, such
as aligning gears or installing screws. These tasks require
motion planning with millimeter-level or even finer
precision. VLMs and LLMs are known for their flexibility
and generalisation, which inevitably leads to a decrease
in precision for specific tasks. Enhancing the motion
planning precision of VLM/LLM-based manipulation
to achieve a balance of flexibility, generalisation, and
accuracy is a promising research direction. To address the
challenge of achieving high precision in motion planning
for vision and language manipulation in industrial appli-
cations, integrating advanced sensor technologies and
feedback control systems may offer a viable solution.

6.5 Additional modalities and complex instruction
understanding

Integrating additional modalities into VLM-guided
human-robot skill transfer could enhance a robot's
contextual understanding and skill acquisition. While
visual and linguistic cues furnish robots with spatial
semantics, the incorporation of haptic feedback through
advanced sensors is pivotal. This addition enables robots
with precise force information, thereby augmenting their
capacity to execute complex tasks that necessitate delicate
force control. The multimodal approach not only enriches
the sensory feedback loop for real-time action adjustment
but also broadens the robot's interaction repertoire.

Furthermore, existing research often confines language
instructions to a simplistic format, typically a “(verb)
(noun)” structure. However, advancing toward more
complex linguistic instructions is crucial for enhancing
real-world applicability. The current limitations of VLMs
in handling intricate or contextually dependent instruc-
tions, especially in scenarios with dynamic task or action
sequences, require improvement. A key focus should be
enhancing VLMs to comprehend multi-step logical
instructions and clarify non-standard linguistic cues. For
example, integrating advanced natural language processing
techniques, such as context-aware transformers and hier-
archical task analysis, can significantly improve the
comprehension of complex instructions. This evolution is
vital for enabling robots with the sophistication required
to navigate and adapt effectively in diverse real-world
scenarios.
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6.6 Dynamic task adaptation and unsupervised
evaluation

To facilitate the effective transfer of skills acquired in
simulations to real-world applications, learning algorithms
must possess robustness to real-world variability, encom-
passing factors such as fluctuating lighting and discrepan-
cies in physical engine accuracy. However, current meth-
ods always rely on an assumption of an ideal training
environment, with expectations of reasonable object orig-
inal poses or a standardised training step. However, real-
world deployment confronts these algorithms with a far
greater range of unpredictability, which necessitates
human operators for continuous monitoring and interven-
tion. This significantly hinders real applications.

To overcome this, robots must evolve to autonomously
adapt to dynamic environments and tasks, incorporating
multimodal feedback for self-adjustment. This may
require an advanced approach that integrates domain
randomization and augmented reality for training, inten-
tionally introducing a broad spectrum of real-world noise
and variability within simulated environments. By doing
so, skill transfer models can be equipped with enhanced
generalisation abilities. Moreover, the implementation of
unsupervised evaluation mechanisms can establish a
robust self-assessment framework. Leveraging the obser-
vation of robot behavior or state changes could reduce
constant human supervision when faced with crucial situ-
ations. Specifically, implementing a continuous learning
mechanism allows robots to adapt and improve their
performance autonomously over time based on new expe-
riences and feedback from the environment.

7 Conclusions

This survey investigated recent advancements and appli-
cations of VLMs in HRC for smart manufacturing, high-
lighting their potentials and current limitations. Starting
with an overview of the fundamental knowledge of
LLMs and VLMs, it detailed how integrating visual and
textual data enhances robot planning, execution, and
learning capabilities. One can observe that initial explo-
rations of VLMs in robotic task planning, navigation, and
manipulation have shown promising improvements in
flexibility and efficiency, playing a vital role for HRC
in dynamic manufacturing environments. Meanwhile,
VLMs have also demonstrated the ability to streamline
robot skill learning by leveraging multimodal data inte-
gration. Despite these advancements, challenges such as
real-time processing, computational demands, and han-
dling dynamic environments are yet to be explored urg-
ently and timely. To fully unlock the potential of VLMs
in human-centric smart manufacturing, the following
key perspectives can be considered in future research:

1) exploring the scalability of VLMs in highly variable
and real-time HRC scenarios to improve their robustness
and applicability, 2) developing more natural and intuitive
human-robot interaction mechanisms that can enhance
the collaboration efficiency and smoothness, particularly
with advancements in large multimodal models, and
3) exploring methods to reduce the data and computational
requirements of VLMs to make them more practical for
large-scale industrial deployment. By addressing these
areas, future research can build on the progress made so
far and push the boundaries of VLM integration into real-
world HRC applications.
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