Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112356
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorHuang, HN-
dc.creatorQu, T-
dc.creatorQiu, XH-
dc.creatorMa, L-
dc.creatorZhang, ZF-
dc.date.accessioned2025-04-09T00:50:51Z-
dc.date.available2025-04-09T00:50:51Z-
dc.identifier.issn1474-6670-
dc.identifier.urihttp://hdl.handle.net/10397/112356-
dc.description18th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2024: Vienna, Austria, August 28-30, 2024en_US
dc.language.isoenen_US
dc.publisherIFAC Secretariaten_US
dc.rightsCopyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). Peer review under responsibility of International Federation of Automatic Control.en_US
dc.rightsThe following publication Huang, H.-n., Qu, T., Qiu, X.-h., Ma, L., & Zhang, Z.-f. (2024). Collaborative Reconfiguration of Supply Networks Based on GNN and ALC. IFAC-PapersOnLine, 58(19), 1-6 is available at https://doi.org/10.1016/j.ifacol.2024.09.063.en_US
dc.subjectALCen_US
dc.subjectCollaborative reconfigurationen_US
dc.subjectGNNen_US
dc.subjectIndustry chainen_US
dc.subjectSudden disturbanceen_US
dc.subjectSupply chainen_US
dc.titleCollaborative reconfiguration of supply networks based on GNN and ALCen_US
dc.typeConference Paperen_US
dc.identifier.spage1-
dc.identifier.epage6-
dc.identifier.volume58-
dc.identifier.issue19-
dc.identifier.doi10.1016/j.ifacol.2024.09.063-
dcterms.abstractWith the prevalence of lean and just-in-time principles, traditional supply chains often exhibit inflexibility, leading to challenges in satisfying extensive customized orders and managing risks during disruptions. Thus, there is a need for a more flexible, resilient, and collaborative network and strategies to tackle the aforementioned challenges. In this study, we introduce a new supply network called the industry supply chain, aimed at enabling collaborative decision-making and dynamic reconfiguration. We create a graph neural network model to promptly identify sudden disturbances and devise a distributed multidisciplinary optimization model to facilitate collaborative reconfiguration. The experimental findings from an air-conditioning industry supply chain show that network reconfiguration under real-time disturbance detection reduces losses and improves operational stability.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIFAC-PapersOnLine, 2024, v. 58, no. 19, p. 1-6-
dcterms.isPartOfIFAC-PapersOnLine-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85208070374-
dc.relation.conferenceIFAC Symposium on Information Control Problems in Manufacturing [INCOM]-
dc.identifier.eissn2405-8963-
dc.description.validate202504 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of China; National Natural Science Foundation of China; Postgraduate Scientific Research Innovation Project of Hunan Province; 2019 Guangdong Special Support Talent Program � Innovation and Entrepreneurship Leading Team (China)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
1-s2.0-S2405896324014575-main.pdf798.29 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 14, 2025

Downloads

4
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.