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Abstract: With the prevalence of lean and just-in-time principles, traditional supply chains often exhibit 
inflexibility, leading to challenges in satisfying extensive customized orders and managing risks during 
disruptions. Thus, there is a need for a more flexible, resilient, and collaborative network and strategies to 
tackle the aforementioned challenges. In this study, we introduce a new supply network called the industry 
supply chain, aimed at enabling collaborative decision-making and dynamic reconfiguration. We create a 
graph neural network model to promptly identify sudden disturbances and devise a distributed 
multidisciplinary optimization model to facilitate collaborative reconfiguration. The experimental findings 
from an air-conditioning industry supply chain show that network reconfiguration under real-time 
disturbance detection reduces losses and improves operational stability. 
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1. INTRODUCTION 

Currently, the escalating consumer demand for customization 
and the integration of Industry 4.0 technologies have led to a 
rise in customized products that consist of standard, variant, 
and customized parts(Shekarian & Mellat Parast, 2021). 
However, traditional supply chains are struggling to meet the 
rapidly changing demands due to their rigid network structure, 
challenges in sourcing suppliers for the wide variety of 
customized parts, lack of collaboration, and vulnerability to 
risks. To address these issues, there is a growing need for a 
more flexible, collaborative, and resilient approach to supply 
network and management. 

Supply chains are inevitably susceptible to abrupt disturbances 
arising from factors such as fires, earthquakes, hurricanes, 
economic recessions, technological advancements, wars, and 
others (Shekarian & Mellat Parast, 2021), thus presenting 
challenges to the resilience of supply chains. Under sudden 
disruptions, supply chains must reconfigure their networks by 
considering firm, industry, and upstream and downstream 
factors simultaneously, presenting a challenge to supply chain 
collaboration. Collaboration at the firm level necessitates 
distributed decision-making among firms, incorporating 
aspects such as information utilization, firm-independent 
decision-making (Ivanov et al., 2018), and privacy protection 
(Nie et al., 2019). Moreover, at the industry level, 
collaboration is essential among industries providing various 
components, particularly in design and production, to ensure 
the quality and functionality of the final product. Finally, at 
both upstream and downstream levels, industries and firms 
operating at different supply stages face trade-offs concerning 
goals, time, and resources, highlighting the importance of 
coordination between these stages to achieve systemic 
optimization (K. Zhang et al., 2020). 

The current research focus on the flexibility, collaboration, and 
resilience of supply networks has garnered significant 
attention. This study introduces a novel supply network 
structure, known as an industry supply chain, aimed at 
enhancing supply chain flexibility. To enhance supply network 
resilience, a graph neural network-based model for detecting 
supply network disturbances in real-time is proposed in this 
paper. Additionally, a collaborative supply network 
reconfiguration model, based on Augmented Lagrangian 
coordination (ALC), is developed in this study to achieve 
collaborative reconfiguration among firms, industries, and 
upstream and downstream partners systematically. 

The article is structured as follows: Section II critically 
examines recent research on supply network optimization and 
the analysis of supply network disturbances. Section III 
discusses the definition, operational processes, benefits, and 
classifications of industry supply chain. Section IV elaborates 
on the principles of industry supply chain reconfiguration, 
encompassing the disturbance identification model and the 
network collaboration model. Section V presents a numerical 
experiment and conducts a result analysis, while Section VI 
offers conclusions and outlines future research directions. 

2. RELATED WORKS 

2.1 Supply network optimization 

The purpose of supply network optimization is to identify the 
most efficient supply network given specific conditions by 
allocating resources and conducting business operations 
(Ivanov et al., 2017). Currently, research on optimizing supply 
chain networks is comprehensive, spanning various industries 
and sectors, including manufacturing (G. Zhang et al., 2021), 
services (Katoozian & Zanjani, 2022), energy (Li et al., 2019), 
agriculture (Mogale et al., 2018), and more. 
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coordination between these stages to achieve systemic 
optimization (K. Zhang et al., 2020). 

The current research focus on the flexibility, collaboration, and 
resilience of supply networks has garnered significant 
attention. This study introduces a novel supply network 
structure, known as an industry supply chain, aimed at 
enhancing supply chain flexibility. To enhance supply network 
resilience, a graph neural network-based model for detecting 
supply network disturbances in real-time is proposed in this 
paper. Additionally, a collaborative supply network 
reconfiguration model, based on Augmented Lagrangian 
coordination (ALC), is developed in this study to achieve 
collaborative reconfiguration among firms, industries, and 
upstream and downstream partners systematically. 

The article is structured as follows: Section II critically 
examines recent research on supply network optimization and 
the analysis of supply network disturbances. Section III 
discusses the definition, operational processes, benefits, and 
classifications of industry supply chain. Section IV elaborates 
on the principles of industry supply chain reconfiguration, 
encompassing the disturbance identification model and the 
network collaboration model. Section V presents a numerical 
experiment and conducts a result analysis, while Section VI 
offers conclusions and outlines future research directions. 

2. RELATED WORKS 

2.1 Supply network optimization 

The purpose of supply network optimization is to identify the 
most efficient supply network given specific conditions by 
allocating resources and conducting business operations 
(Ivanov et al., 2017). Currently, research on optimizing supply 
chain networks is comprehensive, spanning various industries 
and sectors, including manufacturing (G. Zhang et al., 2021), 
services (Katoozian & Zanjani, 2022), energy (Li et al., 2019), 
agriculture (Mogale et al., 2018), and more. 

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
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2.2 Supply network risk 

Uncertainty and risk exert a substantial influence on supply 
networks. When facing disruption and operational risks 
(Shekarian & Mellat Parast, 2021), supply networks could 
encounter structural impairments. Scholars utilize various 
methodologies to develop resilient supply networks, 
encompassing operations optimization (Liu & Yao, 2018), 
simulation (Dolgui et al., 2020), optimal control (Ivanov et al., 
2016), and artificial intelligence (Seify et al., 2022). 

The current research findings have received widespread 
acclaim, but there are still areas that require further exploration. 
Although numerous studies have focused on supply network 
optimization, the majority of them only address upstream and 
downstream collaboration, neglecting integrated collaborative 
decision-making among firms, industries, and upstream and 
downstream entities. Existing research primarily offers 
specific analyses of isolated unexpected disturbances, 
warranting the development of a comprehensive disturbance 
identification and analysis method to effectively address the 
supply network uncertainties arising from various typical 
unexpected events. 

3. INDUSTRY SUPPLY CHAIN 

This study conceptualizes a new flexible, resilient, and 
collaborative supply network as an industry supply chain: a 
multi-level network formed by the integration of industry and 
supply chains. It relies on highly flexible and robust industry 
chain ecosystems to address customized demands, as depicted 
in Figure 1. Each industry within the industry supply chain, 
consisting of numerous enterprises, functions as a singular 
node in the network. By enhancing collaboration among firms, 
industries, and upstream and downstream sectors and by 
integrating and optimizing information, logistics, and financial 
flows within the industry chain, a customized supply chain is 
established to cater to specific demands.  

The planning process involves a series of negotiations and 
collaborations within the industry supply chain. Initially, 
customization orders are received by the industry supply chain, 
which then negotiates with the upstream manufacturing 

segment to establish upstream-downstream collaborations. 
Subsequently, the manufacturing segment collaborates with 
the internal manufacturing industry to form industry 
collaborations. This process extends further as the 
manufacturing industry negotiates with internal companies to 
establish enterprise collaborations. In a similar fashion, the 
manufacturing segment engages in negotiations with the 
upstream first-tier supply segment to create upstream-
downstream collaborations. The first-tier supply segment, in 
turn, negotiates with each supply industry to establish 
industrial collaborations, and each supply industry negotiates 
with its internal enterprises to form enterprise collaborations. 
This cycle continues into the most upstream segment. 
Furthermore, each related industry negotiates with the logistics 
industry to form industry collaborations, and the logistics 
industry collaborates with internal logistics enterprises to 
establish logistics collaborations. Ultimately, a customized, 
proprietary supply network is formed to meet specific needs. 

The demand from downstream is passed down to enterprises 
through the "segment-industry-enterprise" information 
interaction, enabling them to identify appropriate suppliers by 
utilizing knowledge of industrial alliances. Conversely, the 
demand originating from enterprises is aggregated upwards to 
the industry or segment via the "enterprise-industry-segment" 
information exchange, thereby creating a scale effect through 
the consolidation of information and resources. 

Traditional supply chains typically follow an upstream-
downstream serial structure through firm-to-firm supply 
relationships. Conversely, industry supply chains exhibit a 
multilevel network structure, fostering industry-to-industry 
relationships that form a three-level collaborative network 
among upstream and downstream entities, inter-industry, and 
intra-enterprise, enhancing collaboration. Unlike the rigidity 
of traditional supply chains, industry supply chains establish 
potential supply relationships with numerous suppliers in 
related industries. Upon receiving customized orders, the 
industry supply chain promptly creates a specific supply 
network with potential suppliers, thereby enhancing flexibility 
in the supply process. Lastly, regarding network resilience, the 
prevailing lean thinking in supply chains tends to neglect 
security redundancy. In contrast, industry supply chains are 

Fig. 1. Industry supply chain structure 
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geared towards engaging with a wide array of potential 
suppliers, providing a safety net in the event of supply 
disruptions by offering ample resources for network 
reconfiguration, thus enhancing network resilience. 

4. MATHEMATICAL FORMULATION 

This section introduces a disturbance identification model 
based on GNN to detect end-to-end disruptions in the supply 
network. The nodes identified with disturbances are then 
integrated into the ALC model for network reconfiguration. 

4.1 DOMINANT-based disturbance identification model 

DOMINANT was first proposed by Ding et al. (2019) for 
identifying anomalous or disturbed states of nodes on an 
attribute network and is one of the best current models for 
disturbance detection. It consists of a graph convolutional 
neural network (GCN) and a deep self-encoder. The GCN 
plays a crucial role in effectively modeling both the network's 
topology and node attributes for optimal node embedding 
learning. On the other hand, the deep self-encoder utilizes 
these learned embeddings to reconstruct the initial graph 
structure. Notably, the representation of industry supply chains 
as graph data lends itself well to the application of GNN. The 
DOMINANT framework comprises three key modules: an 
attribute network encoder, a structure reconstruction decoder, 
and an attribute reconstruction decoder. 

The attribute network encoder utilizes two layers of GCN 
(Equations 1 and 2). The structure reconstruction decoder 
reconstructs the adjacency matrix (Equations 3 and 4), while 
the attribute reconstruction decoder regenerates the node 
attributes using two layers of GCN (Equation 5). Training the 
network involves minimizing the reconstruction errors of both 
structure and attributes (Equation 6). Subsequently, the 
disrupted score of a node is computed using Equation (7), with 
a higher score indicating a higher likelihood of disturbance. 

𝐴̃𝐴 = 𝐷𝐷−1
2(𝐴𝐴 + 𝐼𝐼)𝐷𝐷−1

2 (1) 

𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃𝐴 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴̃𝐴𝑋𝑋𝑊𝑊1)) 𝑊𝑊2) (2) 

𝑍𝑍 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴̃𝐴𝐵𝐵𝑊𝑊3) (3) 

𝐴̂𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍𝑍𝑍𝑇𝑇) (4) 

𝑋̂𝑋 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃𝐴 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴̃𝐴𝐵𝐵𝑊𝑊4)) 𝑊𝑊5) (5) 

min 𝐿𝐿 = (1 − 𝛼𝛼)‖𝐴𝐴 − 𝐴̂𝐴‖𝐹𝐹
2 + 𝛼𝛼‖𝑋𝑋 − 𝑋̂𝑋‖𝐹𝐹

2 (6) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = (1 − 𝛼𝛼)‖𝑎𝑎 − 𝑎̂𝑎𝑖𝑖‖2
2 + 𝛼𝛼‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖2

2 (7) 

Where 𝐴𝐴, 𝑋𝑋, 𝐼𝐼 are adjacency matrix, node attribute matrix and 
unit diagonal matrix respectively. 𝐷𝐷 is the diagonal matrix of 
(𝐴𝐴 + 𝐼𝐼). The filter or feature map parameters 𝑊𝑊𝑖𝑖 are shared for 
all nodes on the attributed network. The ‖·‖𝐹𝐹 is the Frobenius 
paradigm of the matrix, 𝛼𝛼 is the node attribute weights in the 
range [0,1] 

4.2 ALC-based industry supply chain reconfiguration model 

This study delves into the issue of network reconfiguration 
within a customized order-driven industry supply chain 

comprising five segments: parts supply, logistics, finished 
product assembly, logistics, and the consumer group. Each 
individual firm may potentially encounter disruptions. 
Specifically, the industry supply chain processes 𝑅𝑅 
customized orders, each comprising standard, variant, and 
custom parts. These orders are executed through collaboration 
across upstream-downstream, inter-industry, and inter-firm 
channels. For the sake of simplification, key assumptions 
include: (1) single-source procurement; (2) firms making 
independent decisions with a focus on privacy protection; and 
(3) the profit-oriented nature of the industry supply chain. 

Augmented Lagrangian Coordination (ALC) is a 
multidisciplinary optimization method (Tosserams et al., 2008) 
that draws on the Augmented Lagrangian method and block 
coordinate descent algorithm. By utilizing modern distributed 
computing technology, ALC integrates multidisciplinary 
knowledge to facilitate the distributed coordination of system 
components in alignment with optimization principles, 
ultimately realizing the optimal system-wide solution. This 
paper formulates the industry supply chain network 
reconfiguration problem as an ALC model, illustrated in Fig. 
2. Initially, the DOMINANT model is utilized to monitor the 
status of each node in real-time; if a node is disrupted, it is 
removed from consideration. Subsequently, a distributed 
negotiation process is conducted among the upstream, 
downstream, inter-industry, and inter-firm, involving the 
transmission of coupling variables (𝜂𝜂𝑖𝑖, 𝜂𝜂𝑖𝑖𝑖𝑖) downstream and 
feedback of coupling variables (℧𝑖𝑖, ℧𝑖𝑖𝑖𝑖) upstream, continuing 
until reaching consensus. Ultimately, upon convergence of 𝜂𝜂𝑖𝑖, 
℧𝑖𝑖, 𝜂𝜂𝑖𝑖𝑖𝑖, and ℧𝑖𝑖𝑖𝑖, the entire industry supply chain is optimally 
reconfigured. 

In the following, we present the core part of the proposed ALC 
model: 

Sets 
𝑆𝑆 Set of suppliers, indexed by 𝑠𝑠. 
𝑉𝑉 Set of components/ parts, indexed by 𝑗𝑗. 
𝑀𝑀 Set of manufacturers, indexed by 𝑚𝑚. 
𝑅𝑅 Set of customized orders, indexed by 𝑟𝑟. 
𝐿𝐿 Set of logistics providers, indexed by 𝑙𝑙. 
𝑛𝑛 Number of supply industries. 
𝑚𝑚 Number of manufacturing industries. 
𝑣𝑣 Number of logistics industries. 

Fig. 2 Structure of the ALC reconfiguration model  



4	 Hai-nan Huang  et al. / IFAC PapersOnLine 58-19 (2024) 1–6

𝑄𝑄𝑖𝑖 Maximum number of enterprises in the 𝑖𝑖 industry. 
Parameters 

𝑣𝑣𝑢𝑢 Vector of 𝑢𝑢-th Lagrange multiplier estimates. 
𝑤𝑤𝑢𝑢 Vector of 𝑢𝑢-th penalty weights. 
𝑋𝑋𝑟𝑟 Quantity of finished products 𝑟𝑟 produced. 
𝑐𝑐𝑠𝑠𝑠𝑠  Cost of production of component 𝑗𝑗 by supplier 𝑠𝑠. 

𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠  Storage time of component 𝑗𝑗 at supplier 𝑠𝑠. 
𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠 Unit warehousing cost of part 𝑗𝑗 at supplier 𝑠𝑠. 
𝑉𝑉𝑂𝑂𝑗𝑗  Volume of component 𝑗𝑗. 
𝐴𝐴𝑉𝑉𝑙𝑙 Capacity of the car of the logistics provider 𝑙𝑙. 
𝑘𝑘𝑠𝑠𝑠𝑠 Discount strength of supplier 𝑠𝑠 for component 𝑗𝑗. 
𝐴𝐴𝑠𝑠𝑠𝑠 Maximum quantity of part 𝑗𝑗 that can be produced by 𝑠𝑠. 
𝐵𝐵𝑠𝑠𝑠𝑠  Whether 𝑠𝑠 can produce part 𝑗𝑗, 0 if it can and 1 otherwise. 
𝑝𝑝𝑟𝑟 Selling price of product 𝑟𝑟. 
𝑐𝑐𝑟𝑟 Manufacturing cost of product 𝑟𝑟. 

𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚 Storage time of product 𝑟𝑟 at manufacturer 𝑚𝑚. 
𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚 Unit warehousing cost of product 𝑟𝑟 at manufacturer 𝑚𝑚. 

𝑘𝑘𝑙𝑙 Discount strength of logistician 𝑙𝑙 in the range [0,1]. 
𝑀𝑀𝑂𝑂𝑟𝑟 Volume of product 𝑟𝑟. 
𝑎𝑎𝑗𝑗𝑗𝑗 Whether product 𝑟𝑟 contains component 𝑗𝑗. 
𝐵𝐵𝑚𝑚𝑚𝑚 Whether 𝑚𝑚 can assemble part 𝑗𝑗, 0 if so, 1 otherwise. 

𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 Distance from supplier 𝑠𝑠 to manufacturer 𝑚𝑚. 
𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 Distance from manufacturer 𝑚𝑚 to order 𝑟𝑟. 

𝜃𝜃𝑙𝑙 Transport costs per unit distance for logistician 𝑙𝑙. 
𝜚𝜚𝑚𝑚𝑚𝑚 Difficulty of transport from manufacturer 𝑚𝑚 to order 𝑟𝑟. 
𝜚𝜚𝑠𝑠𝑠𝑠 Difficulty of transport from supplier 𝑠𝑠 to 𝑚𝑚. 
𝑏𝑏𝑠𝑠𝑠𝑠 Unit costs for transporting items from 𝑠𝑠 to 𝑚𝑚. 
𝑜𝑜𝑚𝑚𝑚𝑚 Unit cost of transporting items from 𝑚𝑚 to order 𝑟𝑟. 

Coupling variables 

[∙]𝑖𝑖𝑖𝑖𝑖𝑖(ℎ) The superscripts 𝑖𝑖, 𝑡𝑡, 𝑙𝑙, ℎ denote 𝑖𝑖 industry, 𝑡𝑡 firm, local 
level, and higher level, respectively. 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 Quantity of part 𝑗𝑗 supplied by 𝑠𝑠 to 𝑚𝑚. 
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 Price to manufacturer 𝑚𝑚 for part 𝑗𝑗 supplied by 𝑠𝑠. 
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Quantity of 𝑟𝑟 distributed by 𝑚𝑚 using logistics 𝑙𝑙. 
𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 Price of transporting 𝑟𝑟 produced by 𝑚𝑚 by logistics 𝑙𝑙. 
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Quantity of part 𝑗𝑗 shipped by 𝑙𝑙 from 𝑠𝑠 to 𝑚𝑚. 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Price of transporting part𝑗𝑗 from 𝑠𝑠 to 𝑚𝑚 by 𝑙𝑙. 

Local variables 
ℎ𝑚𝑚𝑚𝑚 Whether product 𝑟𝑟 is produced by manufacturer 𝑚𝑚. 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Whether 𝑠𝑠 supplies part𝑗𝑗 to 𝑚𝑚 and 𝑗𝑗 is belonging to 𝑟𝑟. 
Manufacturer 𝑖𝑖𝑡𝑡 model, 𝑖𝑖, 𝑡𝑡 ∈ {𝑛𝑛, … , 𝑛𝑛 + 𝑚𝑚 − 1}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖,𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑖𝑖𝑖𝑖,𝑡𝑡𝑖𝑖𝑖𝑖]

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (8)  

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ (𝑋𝑋𝑟𝑟ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 (𝑃𝑃𝑟𝑟 − 𝑐𝑐𝑟𝑟

𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 ))𝑟𝑟∈𝑅𝑅

− ∑ ∑ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆 − ∑ ∑ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿𝑟𝑟∈𝑅𝑅 (9)
  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2

2
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (10)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑧𝑧𝑖𝑖𝑖𝑖ℎ, 𝑝𝑝𝑖𝑖𝑖𝑖ℎ, 𝑘𝑘𝑖𝑖𝑖𝑖ℎ, 𝑜𝑜𝑖𝑖𝑖𝑖ℎ]
−[𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖] (11)  

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑋𝑋𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑅𝑅 , ∀𝑠𝑠, 𝑗𝑗 ∈ 𝑆𝑆, 𝑉𝑉 (12)  

∑ 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

𝑠𝑠∈𝑆𝑆 = ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑎𝑎𝑗𝑗𝑗𝑗, ∀𝑗𝑗, 𝑟𝑟 ∈ 𝑉𝑉, 𝑅𝑅 (13)  

∑ 𝑎𝑎𝑗𝑗𝑗𝑗ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑋𝑋𝑟𝑟𝑟𝑟∈𝑅𝑅 ≤ 𝐴𝐴𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 , ∀𝑗𝑗 ∈ 𝑉𝑉 (14)  

𝑎𝑎𝑗𝑗𝑗𝑗ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝐵𝐵𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 0, ∀𝑗𝑗, 𝑟𝑟 ∈ 𝑉𝑉, 𝑅𝑅 (15)  

∑ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿 = ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑋𝑋𝑟𝑟, ∀𝑟𝑟 ∈ 𝑅𝑅 (16)  

Equation 9 is the manufacturer's profit function, which 
consists of three components: production, warehousing, and 
logistics. Equation 10 is the augmented Lagrangian penalty 
term. Equation 11 measures the consistency of the upper level. 
Equation 12 is the order privacy constraint. Equation 13 is the 
single-source sourcing constraint. Equation 14 is the volume 
constraint. Equation 15 is the assembly scope constraint. 
Equation 16 is the logistics constraint. 

Supplier 𝑖𝑖𝑡𝑡 model, 𝑖𝑖, 𝑡𝑡 ∈ {0, … , 𝑛𝑛 − 1}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖]

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (17)  

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ ∑ ((𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 )𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉

− ∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗

𝑖𝑖𝑖𝑖

𝐴𝐴𝑉𝑉𝑙𝑙
⌉ 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐿𝐿𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉 (18)

  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2

2
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (19)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑝𝑝𝑖𝑖𝑖𝑖ℎ, 𝑧𝑧𝑖𝑖𝑖𝑖ℎ, 𝑦𝑦𝑖𝑖𝑖𝑖ℎ, 𝑏𝑏𝑖𝑖𝑖𝑖ℎ]
−[𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖] (20)  

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑗𝑗 (1 − 𝑘𝑘𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 ) + 𝑘𝑘𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 (𝑐𝑐𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖),
∀𝑠𝑠, 𝑗𝑗, 𝑚𝑚 ∈ 𝑆𝑆, 𝑉𝑉, 𝑀𝑀 (21)

  

∑ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐴𝐴𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀 , ∀𝑗𝑗 ∈ 𝑉𝑉 (22)  

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 𝐵𝐵𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 = 0, ∀𝑗𝑗, 𝑚𝑚 ∈ 𝑉𝑉, 𝑀𝑀 (23)  

∑ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿 = 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 , ∀𝑗𝑗, 𝑚𝑚 ∈ 𝑉𝑉, 𝑀𝑀 (24)  

Equation 18 is the supplier's profit function, which consists of 
three components: production, warehousing, and logistics. 
Equation 19 is the augmented Lagrangian penalty term. 
Equation 20 measures the model's consistency at the upper 
level. Equation 21 is the price function for components. 
Equation 22 is the capacity constraint. Equation 23 is the 
production range constraint. Equation 24 represents the 
logistics constraint. 

Logistics provider 𝑖𝑖𝑖𝑖  model, 𝑖𝑖, 𝑡𝑡 ∈ {𝑛𝑛 + 𝑚𝑚, … , 𝑛𝑛 + 𝑚𝑚 +
𝑣𝑣}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖,𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖]

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (25)  

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑚𝑚∈𝑀𝑀 (𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠)𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆

+ ∑ ∑ ⌈𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉ (𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑚𝑚𝑚𝑚𝑀𝑀𝐷𝐷𝑚𝑚𝑚𝑚)𝑟𝑟∈𝑅𝑅𝑚𝑚∈𝑀𝑀 (26)
  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2
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𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (27)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑘𝑘𝑖𝑖𝑖𝑖ℎ, 𝑜𝑜𝑖𝑖𝑖𝑖ℎ, 𝑦𝑦𝑖𝑖𝑖𝑖ℎ, 𝑏𝑏𝑖𝑖𝑖𝑖ℎ]
−[𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖] (28)  

∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆 + ∑ ∑ ⌈𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑟𝑟∈𝑅𝑅𝑚𝑚∈𝑀𝑀 ≤ 𝐸𝐸𝑙𝑙
𝑖𝑖𝑖𝑖 (29)  

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠 + (𝑏𝑏𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑙𝑙
𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠)

∗ (1 − 𝑘𝑘𝑙𝑙
𝑖𝑖𝑖𝑖 ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉ 1
𝐸𝐸𝑙𝑙

𝑖𝑖𝑖𝑖) , ∀𝑠𝑠, 𝑗𝑗, 𝑚𝑚 ∈ 𝑆𝑆, 𝑉𝑉, 𝑀𝑀 (30)
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𝑄𝑄𝑖𝑖 Maximum number of enterprises in the 𝑖𝑖 industry. 
Parameters 

𝑣𝑣𝑢𝑢 Vector of 𝑢𝑢-th Lagrange multiplier estimates. 
𝑤𝑤𝑢𝑢 Vector of 𝑢𝑢-th penalty weights. 
𝑋𝑋𝑟𝑟 Quantity of finished products 𝑟𝑟 produced. 
𝑐𝑐𝑠𝑠𝑠𝑠  Cost of production of component 𝑗𝑗 by supplier 𝑠𝑠. 

𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠  Storage time of component 𝑗𝑗 at supplier 𝑠𝑠. 
𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠 Unit warehousing cost of part 𝑗𝑗 at supplier 𝑠𝑠. 
𝑉𝑉𝑂𝑂𝑗𝑗  Volume of component 𝑗𝑗. 
𝐴𝐴𝑉𝑉𝑙𝑙 Capacity of the car of the logistics provider 𝑙𝑙. 
𝑘𝑘𝑠𝑠𝑠𝑠 Discount strength of supplier 𝑠𝑠 for component 𝑗𝑗. 
𝐴𝐴𝑠𝑠𝑠𝑠 Maximum quantity of part 𝑗𝑗 that can be produced by 𝑠𝑠. 
𝐵𝐵𝑠𝑠𝑠𝑠  Whether 𝑠𝑠 can produce part 𝑗𝑗, 0 if it can and 1 otherwise. 
𝑝𝑝𝑟𝑟 Selling price of product 𝑟𝑟. 
𝑐𝑐𝑟𝑟 Manufacturing cost of product 𝑟𝑟. 

𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚 Storage time of product 𝑟𝑟 at manufacturer 𝑚𝑚. 
𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚 Unit warehousing cost of product 𝑟𝑟 at manufacturer 𝑚𝑚. 

𝑘𝑘𝑙𝑙 Discount strength of logistician 𝑙𝑙 in the range [0,1]. 
𝑀𝑀𝑂𝑂𝑟𝑟 Volume of product 𝑟𝑟. 
𝑎𝑎𝑗𝑗𝑗𝑗 Whether product 𝑟𝑟 contains component 𝑗𝑗. 
𝐵𝐵𝑚𝑚𝑚𝑚 Whether 𝑚𝑚 can assemble part 𝑗𝑗, 0 if so, 1 otherwise. 

𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 Distance from supplier 𝑠𝑠 to manufacturer 𝑚𝑚. 
𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 Distance from manufacturer 𝑚𝑚 to order 𝑟𝑟. 

𝜃𝜃𝑙𝑙 Transport costs per unit distance for logistician 𝑙𝑙. 
𝜚𝜚𝑚𝑚𝑚𝑚 Difficulty of transport from manufacturer 𝑚𝑚 to order 𝑟𝑟. 
𝜚𝜚𝑠𝑠𝑠𝑠 Difficulty of transport from supplier 𝑠𝑠 to 𝑚𝑚. 
𝑏𝑏𝑠𝑠𝑠𝑠 Unit costs for transporting items from 𝑠𝑠 to 𝑚𝑚. 
𝑜𝑜𝑚𝑚𝑚𝑚 Unit cost of transporting items from 𝑚𝑚 to order 𝑟𝑟. 

Coupling variables 

[∙]𝑖𝑖𝑖𝑖𝑖𝑖(ℎ) The superscripts 𝑖𝑖, 𝑡𝑡, 𝑙𝑙, ℎ denote 𝑖𝑖 industry, 𝑡𝑡 firm, local 
level, and higher level, respectively. 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 Quantity of part 𝑗𝑗 supplied by 𝑠𝑠 to 𝑚𝑚. 
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 Price to manufacturer 𝑚𝑚 for part 𝑗𝑗 supplied by 𝑠𝑠. 
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Quantity of 𝑟𝑟 distributed by 𝑚𝑚 using logistics 𝑙𝑙. 
𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 Price of transporting 𝑟𝑟 produced by 𝑚𝑚 by logistics 𝑙𝑙. 
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Quantity of part 𝑗𝑗 shipped by 𝑙𝑙 from 𝑠𝑠 to 𝑚𝑚. 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Price of transporting part𝑗𝑗 from 𝑠𝑠 to 𝑚𝑚 by 𝑙𝑙. 

Local variables 
ℎ𝑚𝑚𝑚𝑚 Whether product 𝑟𝑟 is produced by manufacturer 𝑚𝑚. 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Whether 𝑠𝑠 supplies part𝑗𝑗 to 𝑚𝑚 and 𝑗𝑗 is belonging to 𝑟𝑟. 
Manufacturer 𝑖𝑖𝑡𝑡 model, 𝑖𝑖, 𝑡𝑡 ∈ {𝑛𝑛, … , 𝑛𝑛 + 𝑚𝑚 − 1}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖,𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑖𝑖𝑖𝑖,𝑡𝑡𝑖𝑖𝑖𝑖]

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (8)  

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ (𝑋𝑋𝑟𝑟ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 (𝑃𝑃𝑟𝑟 − 𝑐𝑐𝑟𝑟

𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 ))𝑟𝑟∈𝑅𝑅

− ∑ ∑ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆 − ∑ ∑ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿𝑟𝑟∈𝑅𝑅 (9)
  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2
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𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (10)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑧𝑧𝑖𝑖𝑖𝑖ℎ, 𝑝𝑝𝑖𝑖𝑖𝑖ℎ, 𝑘𝑘𝑖𝑖𝑖𝑖ℎ, 𝑜𝑜𝑖𝑖𝑖𝑖ℎ]
−[𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖] (11)  

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑋𝑋𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑅𝑅 , ∀𝑠𝑠, 𝑗𝑗 ∈ 𝑆𝑆, 𝑉𝑉 (12)  

∑ 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

𝑠𝑠∈𝑆𝑆 = ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑎𝑎𝑗𝑗𝑗𝑗, ∀𝑗𝑗, 𝑟𝑟 ∈ 𝑉𝑉, 𝑅𝑅 (13)  

∑ 𝑎𝑎𝑗𝑗𝑗𝑗ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑋𝑋𝑟𝑟𝑟𝑟∈𝑅𝑅 ≤ 𝐴𝐴𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 , ∀𝑗𝑗 ∈ 𝑉𝑉 (14)  

𝑎𝑎𝑗𝑗𝑗𝑗ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝐵𝐵𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 0, ∀𝑗𝑗, 𝑟𝑟 ∈ 𝑉𝑉, 𝑅𝑅 (15)  

∑ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿 = ℎ𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 𝑋𝑋𝑟𝑟, ∀𝑟𝑟 ∈ 𝑅𝑅 (16)  

Equation 9 is the manufacturer's profit function, which 
consists of three components: production, warehousing, and 
logistics. Equation 10 is the augmented Lagrangian penalty 
term. Equation 11 measures the consistency of the upper level. 
Equation 12 is the order privacy constraint. Equation 13 is the 
single-source sourcing constraint. Equation 14 is the volume 
constraint. Equation 15 is the assembly scope constraint. 
Equation 16 is the logistics constraint. 

Supplier 𝑖𝑖𝑡𝑡 model, 𝑖𝑖, 𝑡𝑡 ∈ {0, … , 𝑛𝑛 − 1}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖,𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖]

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (17)  

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ ∑ ((𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 )𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉

− ∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗

𝑖𝑖𝑖𝑖

𝐴𝐴𝑉𝑉𝑙𝑙
⌉ 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙∈𝐿𝐿𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉 (18)

  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2
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𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (19)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑝𝑝𝑖𝑖𝑖𝑖ℎ, 𝑧𝑧𝑖𝑖𝑖𝑖ℎ, 𝑦𝑦𝑖𝑖𝑖𝑖ℎ, 𝑏𝑏𝑖𝑖𝑖𝑖ℎ]
−[𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖] (20)  

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑗𝑗 (1 − 𝑘𝑘𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 ) + 𝑘𝑘𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 (𝑐𝑐𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑇𝑇𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖),
∀𝑠𝑠, 𝑗𝑗, 𝑚𝑚 ∈ 𝑆𝑆, 𝑉𝑉, 𝑀𝑀 (21)

  

∑ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐴𝐴𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖
𝑚𝑚∈𝑀𝑀 , ∀𝑗𝑗 ∈ 𝑉𝑉 (22)  

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖 𝐵𝐵𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 = 0, ∀𝑗𝑗, 𝑚𝑚 ∈ 𝑉𝑉, 𝑀𝑀 (23)  

∑ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙∈𝐿𝐿 = 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 , ∀𝑗𝑗, 𝑚𝑚 ∈ 𝑉𝑉, 𝑀𝑀 (24)  

Equation 18 is the supplier's profit function, which consists of 
three components: production, warehousing, and logistics. 
Equation 19 is the augmented Lagrangian penalty term. 
Equation 20 measures the model's consistency at the upper 
level. Equation 21 is the price function for components. 
Equation 22 is the capacity constraint. Equation 23 is the 
production range constraint. Equation 24 represents the 
logistics constraint. 

Logistics provider 𝑖𝑖𝑖𝑖  model, 𝑖𝑖, 𝑡𝑡 ∈ {𝑛𝑛 + 𝑚𝑚, … , 𝑛𝑛 + 𝑚𝑚 +
𝑣𝑣}, {1, … , 𝑄𝑄𝑖𝑖}: 

min
℧𝑖𝑖𝑖𝑖=[𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖,𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖]

−𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖 (25)  

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑚𝑚∈𝑀𝑀 (𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠)𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆

+ ∑ ∑ ⌈𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉ (𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑚𝑚𝑚𝑚𝑀𝑀𝐷𝐷𝑚𝑚𝑚𝑚)𝑟𝑟∈𝑅𝑅𝑚𝑚∈𝑀𝑀 (26)
  

𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑢𝑢
𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐𝑢𝑢

𝑖𝑖𝑖𝑖
𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ ‖𝑤𝑤𝑢𝑢

𝑖𝑖𝑖𝑖 ∘ 𝑐𝑐𝑢𝑢
𝑖𝑖𝑖𝑖‖2
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𝑢𝑢∈𝑐𝑐𝑖𝑖𝑖𝑖 (27)  

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖 − ℧𝑖𝑖𝑖𝑖 = [𝑘𝑘𝑖𝑖𝑖𝑖ℎ, 𝑜𝑜𝑖𝑖𝑖𝑖ℎ, 𝑦𝑦𝑖𝑖𝑖𝑖ℎ, 𝑏𝑏𝑖𝑖𝑖𝑖ℎ]
−[𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖] (28)  

∑ ∑ ∑ ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝑉𝑉𝑠𝑠∈𝑆𝑆 + ∑ ∑ ⌈𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉𝑟𝑟∈𝑅𝑅𝑚𝑚∈𝑀𝑀 ≤ 𝐸𝐸𝑙𝑙
𝑖𝑖𝑖𝑖 (29)  

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑙𝑙

𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠 + (𝑏𝑏𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑙𝑙
𝑖𝑖𝑖𝑖𝜚𝜚𝑠𝑠𝑠𝑠𝑆𝑆𝐷𝐷𝑠𝑠𝑠𝑠)

∗ (1 − 𝑘𝑘𝑙𝑙
𝑖𝑖𝑖𝑖 ⌈𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑂𝑂𝑗𝑗
𝐴𝐴𝑉𝑉𝑙𝑙

𝑖𝑖𝑖𝑖 ⌉ 1
𝐸𝐸𝑙𝑙

𝑖𝑖𝑖𝑖) , ∀𝑠𝑠, 𝑗𝑗, 𝑚𝑚 ∈ 𝑆𝑆, 𝑉𝑉, 𝑀𝑀 (30)
  

𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑙𝑙𝑖𝑖𝑖𝑖𝜚𝜚𝑚𝑚𝑚𝑚𝑀𝑀𝐷𝐷𝑚𝑚𝑚𝑚 + (𝑜𝑜𝑚𝑚𝑚𝑚 − 𝜃𝜃𝑙𝑙𝑖𝑖𝑖𝑖𝜚𝜚𝑚𝑚𝑚𝑚𝑀𝑀𝐷𝐷𝑚𝑚𝑚𝑚)
∗ (1 − 𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖 ⌈

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂𝑟𝑟
𝐴𝐴𝑉𝑉𝑙𝑙𝑖𝑖𝑖𝑖

⌉ 1
𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖
) , ∀𝑠𝑠, 𝑗𝑗, 𝑚𝑚 ∈ 𝑆𝑆, 𝑉𝑉,𝑀𝑀 (31)  

Equation 26 is the logistician's profit function, which consists 
of the "supplier-manufacturer" and "manufacturer-customer" 
profits. Equation 27 is the augmented Lagrangian penalty term. 
Equation 28 measures the consistency of the upper-level 
model. Equation 29 is the vehicle quantity constraint. 
Equations 30–31 are the logistics price functions. 

The study employed the Augmented Lagrange Multiplier 
Method (ALM) and Block Coordinate Descent (BCD) to 
coordinate and solve hierarchical models (Tosserams et al., 
2008). The BCD method was specifically utilized for solving 
the inner loop, while ALM was applied to tackle the outer loop. 
This method demonstrates robust convergence capabilities for 
non-convex problems, thereby ensuring solution reliability. 

5. EXPERIMENTAL RESULTS 

The experiment was conducted in a prominent air conditioner 
manufacturing ecosystem in China. The air conditioner 
industry supply chain in this ecosystem has implemented an 
industrial internet platform to enhance network collaboration 
efficiency. Air conditioner production in this setting adheres 
to a discrete production model characterized by extensive 
customization options in terms of functions, components, 
appearance, and services. Specifically, this study focuses on a 
core industry supply chain comprising two key supply 
industries (compressor and motor), a single manufacturing 
industry, a logistics industry, and eight unique types of 
customized air-conditioner orders for the purpose of 
experimental analysis. The structure of this industry supply 
chain is delineated in Fig. 3: 

The study explores the efficiency of sequential network 
optimization (sequential optimization), and distributed 
synchronized network optimization (synchronized 
optimization) in dealing with sudden disturbances. 
Furthermore, it investigates the effectiveness of 
reconfiguration with and without the application of 
disturbance detection techniques (DOMINANT). Sequential 
optimization involves making sequential decisions for various 
upstream and downstream segments, while synchronized 
optimization is a distributed global optimization (ALC) model 

that simultaneously considers all upstream and downstream 
segments. Both methods ensure the independence and privacy 
of decisions in different segments. 

The DOMINANT model was trained using real sudden 
disturbance data, including events such as fire, floods, and 
public health crises. Subsequently, 100 untrained sudden 
disturbance instances were utilized in network reconfiguration 
experiments, with each event potentially causing disruptions 
to the supply nodes. Among the 100 disturbance instances, 30 
were confirmed to have an impact, of which DOMINANT 
successfully identified 22 disturbances, misclassified normal 
occurrences as disturbances in 16 cases, and correctly 
identified 54 normal nodes. The impact of sequential 
optimization and synchronized optimization during sudden 
disturbances is presented in Table 1. 

Table 1. Performance evaluation under different programs 

 Mean Standard 
deviation Min Max 

SyND 12724.7 743.5 10191.0 13151.0 
SyD 12966.2 492.4 10487.0 13151.0 

SeND 7757.3 721.4 4895.0 8151.0 
SeD 7976.1 421.6 6079.0 8151.0 

Notes: Synchronized optimization without disturbance detection (SyND); 
Synchronized optimization and disturbance detection (SyD); Sequential 
optimization without disturbance detection (SeND); Sequential 
optimization without disturbance detection (SeD) 

The synchronized optimization demonstrates a significant 
performance improvement of approximately 40% in economic 
benefits compared to traditional sequential optimization, 
regardless of the utilization of disturbance detection 
techniques. This indicates that the synchronized optimization 
approach can enhance decision-making in industry supply 
chains. The benefits of network reconfiguration under 
disturbance detection, whether employing synchronized or 
sequential optimization, consistently exceed those of passive 
execution. Analysis based on the minimum value index reveals 
that the benefits of network reconfiguration under disturbance 
detection consistently surpass those of passive execution, 
suggesting that disturbance detection can elevate the lower 
boundary of industry supply chain benefits. Fig. 4 illustrates 
the violin plots depicting the effects of the four programs. 
Notably, the violin length of network reconfiguration under 
disturbance detection, whether through synchronized or 
sequential optimization, is significantly shorter than that of 
passive execution. This difference underscores that the 

Fig. 3. Industry supply chain for core air conditioners 

Fig.4 Violin plots of benefits under different programs 
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synergistic implementation of synchronized reconfiguration 
and disturbance detection can markedly mitigate the impact of 
unforeseen disturbances, maintaining the industry supply 
chain in a stable operational state. 

6.  CONCLUSIONS AND PERSPECTIVES 

This study explores a novel form of supply network within the 
air-conditioning manufacturing sector known as the industry 
supply chain. It delves into the collaborative reconfiguration 
among firms, industries, and upstream-downstream within the 
industry supply chain. This paper defines and discusses the 
meaning, operation process, and advantages of the industry 
supply chain. A disturbance detection model based on 
DOMINANT and a distributed optimization model based on 
ALC are constructed to achieve dynamic reconfiguration of 
the network under sudden disturbance. The experimental 
results show that active reconfiguration under real-time 
disturbance detection can help reduce losses and ensure that 
the industry supply chain is in a stable and good operating state. 

This paper presents two primary contributions. Firstly, it 
explores a flexible, collaborative, and resilient supply network 
structure (industry supply chain) designed to improve the 
supply and manufacturing of tailored products. Secondly, it 
investigates the distributed reconfiguration problem pertaining 
to inter-firm, inter-industry, and upstream-downstream 
collaboration during sudden disruptions, an issue worthy of 
examination. 

Future research directions should focus on investigating the 
significant variances in structural characteristics and 
collaborative decision-making mechanisms among various 
industry supply chain types. Furthermore, this study solely 
addressed the network optimization problem related to order 
allocation, thus warranting further exploration into network 
optimization concerning R&D collaboration and production 
scheduling. 
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