Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/111884
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Liu, S | - |
| dc.creator | Hu, Y | - |
| dc.creator | Wang, X | - |
| dc.date.accessioned | 2025-03-18T01:13:24Z | - |
| dc.date.available | 2025-03-18T01:13:24Z | - |
| dc.identifier.uri | http://hdl.handle.net/10397/111884 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Mathematical Statistics | en_US |
| dc.rights | All works in this journal are licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). | en_US |
| dc.rights | The following publication Shuhui Liu. Yaozhong Hu. Xiong Wang. "In search of necessary and sufficient conditions to solve the parabolic Anderson model with fractional Gaussian noises." Electron. J. Probab. 29 1 - 48, 2024 is available at https://doi.org/10.1214/24-EJP1200. | en_US |
| dc.subject | Chaos expansion | en_US |
| dc.subject | Fractional Gaussian noise | en_US |
| dc.subject | Hardy-Littlewood-Sobolev inequality | en_US |
| dc.subject | Hölder-Young-Brascamp-Lieb inequality | en_US |
| dc.subject | Necessary and sufficient condition | en_US |
| dc.subject | Parabolic Anderson model | en_US |
| dc.subject | Solvability | en_US |
| dc.title | In search of necessary and sufficient conditions to solve the parabolic Anderson model with fractional Gaussian noises | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1 | - |
| dc.identifier.epage | 48 | - |
| dc.identifier.volume | 29 | - |
| dc.identifier.doi | 10.1214/24-EJP1200 | - |
| dcterms.abstract | This paper attempts to obtain necessary and sufficient conditions to solve the parabolic ∂ Anderson model with fractional Gaussian noises: [Formula Presented] where W (t, x) is the fractional Brownian field with temporal Hurst parameter H0 ∈ [1/2, 1) and spatial Hurst parameters H = (H1, · · ·, Hd) ∈ (0, 1)d, and Ẇ (t, x) = [Formula Presented]. When d = 1 and when (H0, H) ∈ [Formula Presented] we show that the condition 2H0 + H > 5/2 is necessary and sufficient to ensure the existence of a unique solution for the parabolic Anderson Model. When d ≥ 2, we find the necessary and sufficient condition on the Hurst parameters so that each chaos of the solution candidate is square integrable. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Electronic journal of probability, 2024, v. 29, 140, p. 1-48 | - |
| dcterms.isPartOf | Electronic journal of probability | - |
| dcterms.issued | 2024 | - |
| dc.identifier.scopus | 2-s2.0-85205272054 | - |
| dc.identifier.eissn | 1083-6489 | - |
| dc.identifier.artn | 140 | - |
| dc.description.validate | 202503 bcrc | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_Scopus/WOS | en_US |
| dc.description.fundingSource | Self-funded | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | CC | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| i111_24-EJP1200.pdf | 693.59 kB | Adobe PDF | View/Open |
Page views
4
Citations as of Apr 14, 2025
Downloads
3
Citations as of Apr 14, 2025
SCOPUSTM
Citations
2
Citations as of Dec 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



