Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111694
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLi, B-
dc.creatorMa, S-
dc.creatorUeda, Y-
dc.date.accessioned2025-03-13T02:22:04Z-
dc.date.available2025-03-13T02:22:04Z-
dc.identifier.issn2822-7840-
dc.identifier.urihttp://hdl.handle.net/10397/111694-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rights© The authors. Published by EDP Sciences, SMAI 2022en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Li, B., Ma, S., & Ueda, Y. (2022). Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data. ESAIM: M2AN, 56(6), 2105-2139 is available at https://doi.org/10.1051/m2an/2022073.en_US
dc.subjectError estimateen_US
dc.subjectFinite element methoden_US
dc.subjectL2 initial dataen_US
dc.subjectNavier–Stokes equationsen_US
dc.subjectSemi-implicit Euler schemeen_US
dc.titleAnalysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2105-
dc.identifier.epage2139-
dc.identifier.volume56-
dc.identifier.issue6-
dc.identifier.doi10.1051/m2an/2022073-
dcterms.abstractFirst-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier–Stokes equations with L2 initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier–Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete L2(0, tm; H1) norm when tm is smaller than some constant. Numerical examples are provided to support the theoretical analysis.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN), Nov.-Dec. 2022, v. 56, no. 6, p. 2105-2139-
dcterms.isPartOfESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN)-
dcterms.issued2022-11-
dc.identifier.scopus2-s2.0-85145261769-
dc.identifier.eissn2804-7214-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
m2an210118.pdf609.6 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

6
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.