Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111692
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLi, B-
dc.creatorSchratz, K-
dc.creatorZivcovich, F-
dc.date.accessioned2025-03-13T02:22:03Z-
dc.date.available2025-03-13T02:22:03Z-
dc.identifier.issn2822-7840-
dc.identifier.urihttp://hdl.handle.net/10397/111692-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rights© The authors. Published by EDP Sciences, SMAI 2023en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Li, B., Schratz, K., & Zivcovich, F. (2023). A second-order low-regularity correction of Lie splitting for the semilinear Klein–Gordon equation. ESAIM: M2AN, 57(2), 899-919 is available at https://doi.org/10.1051/m2an/2022096.en_US
dc.subjectEnergy spaceen_US
dc.subjectError estimatesen_US
dc.subjectLow regularityen_US
dc.subjectSecond orderen_US
dc.subjectSemilinear Klein–Gordon equationen_US
dc.subjectWave equationen_US
dc.titleA second-order low-regularity correction of Lie splitting for the semilinear Klein-Gordon equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage899-
dc.identifier.epage919-
dc.identifier.volume57-
dc.identifier.issue2-
dc.identifier.doi10.1051/m2an/2022096-
dcterms.abstractThe numerical approximation of nonsmooth solutions of the semilinear Klein-Gordon equation in the d-dimensional space, with d = 1, 2, 3, is studied based on the discovery of a new cancellation structure in the equation. This cancellation structure allows us to construct a low-regularity correction of the Lie splitting method (i.e., exponential Euler method), which can significantly improve the accuracy of the numerical solutions under low-regularity conditions compared with other second-order methods. In particular, the proposed time-stepping method can have second-order convergence in the energy space under the regularity condition (u, ∂t u) ∈ L∞ (0, T; H1+d/4 × Hd/4). In one dimension, the proposed method is shown to have almost 4/3-order convergence in L∞ (0, T; H1 × L2) for solutions in the same space, i.e., no additional regularity in the solution is required. Rigorous error estimates are presented for a fully discrete spectral method with the proposed low-regularity time-stepping scheme. The numerical experiments show that the proposed time-stepping method is much more accurate than previously proposed methods for approximating the time dynamics of nonsmooth solutions of the semilinear Klein-Gordon equation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN), Mar.-Apr. 2023, v. 57, no. 2, p. 899-919-
dcterms.isPartOfESAIM : mathematical modelling and numerical analysis (ESAIM: M2AN)-
dcterms.issued2023-03-
dc.identifier.scopus2-s2.0-85146682806-
dc.identifier.eissn2804-7214-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programmeen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
m2an220092.pdf589.44 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

15
Citations as of Apr 14, 2025

Downloads

9
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.