Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111384
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Pen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2025-02-25T03:22:34Z-
dc.date.available2025-02-25T03:22:34Z-
dc.identifier.issn0363-0129en_US
dc.identifier.urihttp://hdl.handle.net/10397/111384-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematics.en_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Zhang, P., & Xu, Z. Q. (2024). Multidimensional Indefinite Stochastic Riccati Equations and Zero-Sum Stochastic Linear-Quadratic Differential Games with Non-Markovian Regime Switching. SIAM Journal on Control and Optimization, 62(6), 3239-3265 is available at https://doi.org/10.1137/23m1581984.en_US
dc.subjectIndefinite stochastic Riccati equationen_US
dc.subjectMultidimensional backward stochastic differential equationen_US
dc.subjectNon-Markovianen_US
dc.subjectRandom coefficienten_US
dc.subjectRegime switchingen_US
dc.subjectStochastic linear-quadratic controlen_US
dc.subjectZero-sum gameen_US
dc.titleMultidimensional indefinite stochastic riccati equations and zero-sum stochastic linear-quadratic differential games with non-markovian regime switchingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3239en_US
dc.identifier.epage3265en_US
dc.identifier.volume62en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1137/23M1581984en_US
dcterms.abstractThis paper is concerned with zero-sum stochastic linear-quadratic differential games in a regime-switching model. The coefficients of the games depend on the underlying noises, so it is a non-Markovian regime-switching model. Based on the solutions of a new kind of multidimensional indefinite stochastic Riccati equation (SRE) and a multidimensional linear backward stochastic differential equation (BSDE) with unbounded coefficients, we provide closed-loop optimal feedback control-strategy pairs for the two players. The main contribution of this paper, which is of great importance in its own right from the BSDE theory point of view, is to prove the existence and uniqueness of the solution to the new kind of SRE. Notably, the first component of the solution (as a process) is capable of taking positive and negative values simultaneously. For homogeneous systems, we obtain the optimal feedback control-strategy pairs under general closed convex cone control constraints. Finally, these results are applied to portfolio selection games with full or partial no-shorting constraint in a regime-switching market with random coefficients.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2024, v. 62, no. 6, p. 3239-3265en_US
dcterms.isPartOfSIAM journal on control and optimizationen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85212870042-
dc.identifier.eissn1095-7138en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3419a-
dc.identifier.SubFormID50084-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1581984.pdf468.77 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.