Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111360
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorResearch Centre of Textiles for Future Fashionen_US
dc.contributorResearch Institute for Sports Science and Technologyen_US
dc.creatorPeng, Jen_US
dc.creatorZhou, Yen_US
dc.creatorMok, PYen_US
dc.date.accessioned2025-02-20T04:09:55Z-
dc.date.available2025-02-20T04:09:55Z-
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://hdl.handle.net/10397/111360-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).en_US
dc.rightsThe following publication Peng, J., Zhou, Y., & Mok, P. Y. (2025). A cross-feature interaction network for 3D human pose estimation. Pattern Recognition Letters, 189, 175-181 is available at https://doi.org/10.1016/j.patrec.2025.01.016.en_US
dc.subject3D human pose estimationen_US
dc.subjectCross-attentionen_US
dc.subjectGraph convolutional network (GCN)en_US
dc.subjectSelf-attentionen_US
dc.titleA cross-feature interaction network for 3D human pose estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage175en_US
dc.identifier.epage181en_US
dc.identifier.volume189en_US
dc.identifier.doi10.1016/j.patrec.2025.01.016en_US
dcterms.abstractThe task of estimating 3D human poses from single monocular images is challenging because, unlike video sequences, single images can hardly provide any temporal information for the prediction. Most existing methods attempt to predict 3D poses by modeling the spatial dependencies inherent in the anatomical structure of the human skeleton, yet these methods fail to capture the complex local and global relationships that exist among various joints. To solve this problem, we propose a novel Cross-Feature Interaction Network to effectively model spatial correlations between body joints. Specifically, we exploit graph convolutional networks (GCNs) to learn the local features between neighboring joints and the self-attention structure to learn the global features among all joints. We then design a cross-feature interaction (CFI) module to facilitate cross-feature communications among the three different features, namely the local features, global features, and initial 2D pose features, aggregating them to form enhanced spatial representations of human pose. Furthermore, a novel graph-enhanced module (GraMLP) with parallel GCN and multi-layer perceptron is introduced to inject the skeletal knowledge of the human body into the final representation of 3D pose. Extensive experiments on two datasets (Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) show the superior performance of our method in comparison to existing state-of-the-art (SOTA) models. The code and data are shared at https://github.com/JihuaPeng/CFI-3DHPEen_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPattern recognition letters, Mar. 2025, v. 189, p. 175-181en_US
dcterms.isPartOfPattern recognition lettersen_US
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-85216872510-
dc.identifier.eissn1872-7344en_US
dc.description.validate202502 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; Laboratory for Artificial Intelligence in Design under InnoHK Research Clusters, Hong Kong SAR.en_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0167865525000157-main.pdf1.78 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.