
Pattern Recognition Letters 189 (2025) 175–181 

A
0
n

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

A cross-feature interaction network for 3D human pose estimation
Jihua Peng a, Yanghong Zhou a,c, P.Y. Mok a,b,d,e ,∗

a School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
b Laboratory for Artificial Intelligence in Design, Hong Kong
c Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University, Hong Kong
d Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong
e Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong

A R T I C L E I N F O

Editor: Antonio Fernández-Caballero

MSC:
41A05
41A10
65D05
65D17

Keywords:
3D human pose estimation
graph convolutional network (GCN)
self-attention
cross-attention

A B S T R A C T

The task of estimating 3D human poses from single monocular images is challenging because, unlike video
sequences, single images can hardly provide any temporal information for the prediction. Most existing
methods attempt to predict 3D poses by modeling the spatial dependencies inherent in the anatomical structure
of the human skeleton, yet these methods fail to capture the complex local and global relationships that
exist among various joints. To solve this problem, we propose a novel Cross-Feature Interaction Network
to effectively model spatial correlations between body joints. Specifically, we exploit graph convolutional
networks (GCNs) to learn the local features between neighboring joints and the self-attention structure to
learn the global features among all joints. We then design a cross-feature interaction (CFI) module to facilitate
cross-feature communications among the three different features, namely the local features, global features,
and initial 2D pose features, aggregating them to form enhanced spatial representations of human pose.
Furthermore, a novel graph-enhanced module (GraMLP) with parallel GCN and multi-layer perceptron is
introduced to inject the skeletal knowledge of the human body into the final representation of 3D pose.
Extensive experiments on two datasets (Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al.,
2017)) show the superior performance of our method in comparison to existing state-of-the-art (SOTA) models.
The code and data are shared at https://github.com/JihuaPeng/CFI-3DHPE
1. Introduction

The goal of 3D human pose estimation (HPE) is to predict the 3D
coordinates of body joints from input human images. It is a prominent
research field in computer vision with versatile applications across
various domains, such as action recognition [1], human–robot interac-
tion [2], and virtual reality [3]. Among various approaches for 3D HPE,
the 2D-to-3D lifting methods [4–7] represent the mainstream approach,
which infers 3D poses from the estimated 2D poses of the input images.
This approach, benefiting from the remarkable performance of 2D pose
detectors [8,9], has achieved state-of-the-art performance, outperform-
ing other one-step methods [10–12]. However, the task of lifting an
individual 2D pose into 3D space is an ill-posed problem, as multiple
3D poses can yield the same 2D projections. Furthermore, the absence
of temporal information in single monocular images further amplifies
the issue of depth ambiguity in this task. The focus of this research
centers on the investigation for strategies to thoroughly explore and
effectively capture spatial information.
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(P.Y. Mok).

One the other hand, the graph convolutional networks (GCNs) [13,
14] have recently been used for single-frame 3D pose estimation with
outstanding performance. Such GCNs-based methods [15–17] utilize
the topological information of the human skeleton by aggregating
features of the neighboring body joints. However, these methods [15–
17] focus only on modeling the motion characteristics of adjacent
or connecting joints, namely the local information. There are, in fact,
additional implicit kinematic information between joints that are not
physically connected. For example, in the action of ‘walking a dog’,
the joints of two hands and two feet move in the same direction along
the dog’s motion. In order to better capture the global information of
human skeleton representations, some transformer-based methods [18–
20] were proposed, exploiting the self-attention mechanism to ef-
fectively model the spatial dependencies among all body joints. In
addition, some other studies [21–23] combined GCNs and transformers
to facilitate the learning of spatial correlations in human skeleton.
Nevertheless, all of them utilize GCNs and transformer blocks in a
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Fig. 1. Schematic architecture of the proposed method. We extract the initial, local and global features, respectively, by a linear layer, GCNs and self-attention mechanism.
Next, cross-feature interaction (CFI) modules are introduced that facilitate cross-feature communications among these three features. A GraMLP module integrates human skeletal
knowledge as an inductive bias into the final representation of 3D pose.
sequential manner, either using the output of GCNs as the input for a
transformer block or vice versa. The resulting features from both GCNs
and transformers lack direct interaction, which may hinter the model’s
performance, preventing it from fully leveraging the strengths of both
components.

Tao et al. [24] tacked the problem of communication constraints
within network by quantizing the input and output signals. Wang
et al. [25] employed the Q-learning algorithm to continuously update
the action–value function based on interactions between the agent
and the environment. Song et al. [26] developed a neural adaptive
quantized control strategy to alleviate the communication burden in
interconnected nonlinear systems. Inspired by these interaction-based
methods [24–26], for the task of single-frame 3D HPE, we propose a
novel Cross-Feature Interaction (CFI) Network to effectively improve
the learning of spatial representations of human skeleton. The primary
motivation is to enable the network to effectively leverage the local
features derived by GCNs, the global features captured by self-attention,
and the initial features, and simultaneously facilitate cross-feature com-
munication among them. Fig. 1 shows the schematic architecture of
our method. As shown, we capture the local and global features by
GCNs and self-attention mechanisms, respectively. We also obtain the
initial 2D pose features by a linear embedding. The initial features,
often neglected by other methods, can serve as an residual connection,
to effectively compensate for the information loss that occurs during the
layer-to-layer propagation of the other two types of features. Moreover,
we design a specific multi-head cross-attention (MHCA) to facilitate
cross-feature interaction among the three different features, namely
the local features, global features, and the initial 2D pose features.
This specially designed MHCA, named as cross-feature interaction (CFI)
module, can effectively model dependencies between multiple features
and enable the other two features to complement the features of
the current branch. Next, these three types of features derived from
individual CFI modules are aggregated to form the enhanced spatial
features. Finally, we develop a graph-enhanced module (GraMLP) with
parallel structure of GCN and multi-layer perceptron (MLP) to incor-
porate the human skeletal knowledge as an inductive bias into the
final representation of 3D pose. The key contributions of this paper are
summarized as follows:

• We develop a novel Cross-Feature Interaction Network for single-
frame 3D pose estimation. A cross-feature interaction (CFI) mod-
ule is designed to effectively model dependencies among local fea-
tures, global features, and the initial features, which are further
aggregated as the enhanced spatial features.
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• A graph-enhanced module ‘GraMLP’ is introduced to integrate
vanilla MLP with GCN, improving the accuracy of 3D pose es-
timation.

• Extensive experiments on two benchmarks show that our method
outperforms other SOTA models.

2. Related work

2D-to-3D lifting methods. Different from one-step methods [27–
29] that directly regress the 3D pose from input images, the two-step
methods utilize the intermediate 2D pose detectors [8,9]. They first
obtain 2D joint coordinates from input images using off-the-shelf 2D
pose detectors, and then design a 2D-to-3D lifting network to lift these
2D poses into 3D space. Martinez et al. [4] proposed a simple yet
effective baseline network to regress the single 3D pose, which demon-
strates the outstanding performance of estimated 3D pose obtained
by utilizing accurately predicted 2D pose locations as inputs. Fang
et al. [30] integrated bi-directional RNNs with cascaded linear layers
to encode the human body configurations into a knowledge set. Zhang
et al. [31] proposed a human structure aware network to refine the
coordinates of hard joints.

GCN-based methods. Given that the human skeletal structure can
be represented as a graph, several methods [15–17] leverage GCNs to
model spatial correlations among body joints. Zhao et al. [15] intro-
duced a learnable mask to scale up the receptive field of convolution
filters in GCNs, capturing semantic information among all nodes. Liu
et al. [16] explored different weight sharing schemes in GCNs and
proposed a pre-aggregation graph convolution to aggregate node in-
formation with varying weights. Zou and Tang [17] introduced a
weight modulation vector and a matrix modulation vector to efficiently
enhance the performance of GCN-based pose estimation.

Transformer-based methods. Transformer, a deep learning net-
work, has revolutionized first in natural language processing (NLP) and
later in computer vision since its introduction in 2017 [32]. Zheng
et al. [18] first utilized the transformer to learn spatio-temporal rep-
resentations for 3D pose estimation. Zhu et al. [21] inserted the graph
convolution into transformer to model long-range correlations among
multi-top neighboring nodes. Zhao et al. [22] replaced the MLP in
the transformer with learnable graph convolution layers to form the
GraAttention block, capturing global information among all nodes. Li
et al. [20] encoded the relative distance between a pair of joints and
used the distance information as the attention bias in the self-attention
module. However, these methods fail to effectively leverage the individ-
ual strengths of GCNs and self-attention mechanisms in extracting local
and global features, respectively, nor model the interactions between
the features.
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Fig. 2. An overview of Cross-Feature Interaction Network. The input 2D pose joints 𝑋 ∈ R𝑁×2 are projected to initial features 𝑋𝐼 ∈ R𝑁×𝐷 by a linear embedding. Then, the initial
features are processed by GCNs and self-attention, respectively, generating local features 𝑋𝐿 ∈ R𝑁×𝐷 and global features 𝑋𝐺 ∈ R𝑁×𝐷 . Three CFI modules output three enhanced
features 𝑋′

𝐺 , 𝑋′
𝐿 , 𝑋′

𝐼 , which are then added together to form 𝑋𝐶 𝐹 𝐼 to input to the GraMLP. Lastly, the GraMLP output the 𝑋𝑜𝑢𝑡 to the regression head to generate the final 3D pose.
3. Proposed method

In this paper, we design a network to facilitate the communica-
tion between local and global features, simultaneously considering
the modeling capabilities of GCNs [33] and multi-head self-attention
(MHSA) [32], as shown in Fig. 2. We first present a brief overview of
GCNs and MHSA below.

3.1. Preliminary

Graph convolutional networks (GCNs) [33]. A graph can be
defined as  = { , }, where  is a collection of nodes and  indicates
a set of edges. The representation of edges can be realized through an
adjacency matrix 𝐴 ∈ {0, 1}𝑁×𝑁 , while the set of features of all nodes in
the 𝑙th layer can be expressed as a matrix 𝐻𝑙 ∈ R𝐷×𝑁 , where 𝑁 is the
number of nodes, and 𝐷 represents the feature dimension. The graph
convolution operation aggregates features from neighboring nodes in
the 𝑙th layer as follows:

𝐻𝑙 = 𝜎(𝑊𝑙𝐻𝑙−1𝐴̃) (1)

where 𝑊𝑙 ∈ R𝐷×𝐷 is a learnable weight matrix 𝐴̃, referring to the
adjacency matrix of the graph with the inclusion of self-connections,
𝐴̃ = 𝐴 + 𝐼𝑁 and 𝐼𝑁 is an identity matrix.

Multi-head self-attention (MHSA) [32]. The MHSA computes mul-
tiple attention heads via self-attention in parallel. Each attention head

(𝑖 = 1,… , ℎ) is computed by ℎ𝑒𝑎𝑑𝑖 = Softmax
( (

𝑍 𝑊 𝑄
𝑖

)

(

𝑍 𝑊 𝐾
𝑖

)𝑇

√

𝑑𝑚

)

(

𝑍 𝑊 𝑉
𝑖
)

,

where 𝑍 ∈ R𝑁×𝐷 is the input token, 𝑊 𝑄
𝑖 , 𝑊 𝐾

𝑖 and 𝑊 𝑉
𝑖 ∈ R𝐷×𝐷

are learnable parameters. The function Softmax(⋅) normalizes the dot-
product scores into a probability distribution. All ℎ attention heads are
then concatenated together:

𝑍𝑀 𝐻 𝑆 𝐴 = Concat(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑖,… , ℎ𝑒𝑎𝑑ℎ) (2)

where function Concat(⋅) combines the outputs of multiple attention
heads, followed by a linear transformation, to form the final output
𝑍𝑀 𝐻 𝑆 𝐴.

3.2. Cross-feature interaction

Fig. 2 illustrates the proposed Cross-Feature Interaction Network,
which consists of two main components of Cross-Feature Interaction
module (CFI) and graph-enhanced module (GraMLP). The input 2D
pose joints 𝑋 ∈ R𝑁×2 are initially embedded into high-dimensional
tokens by a linear embedding layer, resulting in the initial features,
denoted as 𝑋𝐼 ∈ R𝑁×𝐷. 𝑁 represents the number of joints, and 𝑁 =
17 for 3D HPE task, while 𝐷 represents the feature dimension, which
can be set to 256, 512, 1024, or other values. The initial features 𝑋𝐼 is
then fed into the GCN, yielding the local features 𝑋𝐿 ∈ R𝑁×𝐷:
𝑋𝐿 = 𝜎(𝑊 𝑋𝐼 𝐴̃) (3)
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where 𝐴̃ denotes the adjacency matrix of anatomical relationships in
the human body. We obtain the global features 𝑋𝐺 ∈ R𝑁×𝐷 by Eq. (2)
and each head is resulted from feeding initial features 𝑋𝐼 to the MHSA:

ℎ𝑒𝑎𝑑𝐺𝑖 = Softmax
⎛

⎜

⎜

⎜

⎝

(

𝑋𝐼𝑊
𝑄
𝑖

)

(

𝑋𝐼𝑊 𝐾
𝑖
)𝑇

√

𝑑𝑚

⎞

⎟

⎟

⎟

⎠

(

𝑋𝐼𝑊
𝑉
𝑖
)

(4)

To facilitate communication and achieve mutual complementarity
among the three types of features, we introduce a cross-feature inter-
action module, as shown in Fig. 3. For example, the initial features 𝑋𝐼 ,
local features 𝑋𝐿, and global features 𝑋𝐺 are regarded as queries, keys,
and values, respectively, for a specific multi-head cross attention of the
CFI unit as follows:

ℎ𝑒𝑎𝑑𝑖 = Softmax
⎛

⎜

⎜

⎜

⎝

(

𝑋𝐼𝑊
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)
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𝑋𝐿𝑊 𝐾
𝑖
)𝑇
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⎞

⎟

⎟

⎟

⎠

(

𝑋𝐺𝑊
𝑉
𝑖
)

(5)

In Eq. (5), Softmax(⋅) is used to compute attention weights that de-
termine the contribution of each feature to the attended output. The
enhanced global features 𝑋′

𝐺 ∈ R𝑁×𝐷 can be obtained by:

𝑋′
𝐺 = Concat(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑖,… , ℎ𝑒𝑎𝑑ℎ) +𝑋𝐺 (6)

where Concat(⋅) aggregates the attended features across multiple at-
tention heads. By Eq. (5), the three features engage in interactions
and exchange information with each other. The global features can
compensate for the limited receptive field of GCN, providing additional
implicit kinematic knowledge to the local features. The initial features
can offer valuable information that may be lost during the process of
feature aggregation by GCN from neighboring joints. Moreover, the
residual term in Eq. (6) ensures that the current branch focus on the
global features.

Similarly, we employ the CFI module to obtain the enhanced local
features 𝑋′

𝐿 ∈ R𝑁×𝐷 and initial features 𝑋′
𝐼 ∈ R𝑁×𝐷. Hereafter, the

enhanced features 𝑋′
𝐺, 𝑋′

𝐿 and 𝑋′
𝐼 are sum up to form as the output

sequence from the CFI modules:

𝑋𝐶 𝐹 𝐼 = 𝑋′
𝐺 +𝑋′

𝐿 +𝑋′
𝐼 (7)

which 𝑋𝐶 𝐹 𝐼 is input to the GraMLP module.

3.3. GraMLP

The MLP structure in a vanilla transformer is densely connected,
which has limited ability to model topological structure information
of human skeleton. To inject the human skeleton information into the
final 3D pose, we introduce a parallel design of MLP and GCN, namely
GraMLP. Considering that the MLP can introduce non-linearities to the
input features, adding GCN in parallel can retain anatomical knowl-
edge of the human body, serving as an inductive bias to enhance the
representation of 3D pose. GraMLP processes the features from the CFI
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Fig. 3. Cross-feature interaction module (CFI) with three input features of 𝑋𝐼 , 𝑋𝐿 and
𝐺 . One feature vector serves as the query while the others serve as key and value,

nabling information exchange across different features. The output of this interaction
odule generates enhanced features 𝑋′

𝐼 , 𝑋′
𝐿 and 𝑋′

𝐺 , respectively.

module as follows:

𝑋𝑜𝑢𝑡 = 𝑋𝐶 𝐹 𝐼 +𝑀 𝐿𝑃 (𝑋𝐶 𝐹 𝐼 ) + 𝐺 𝐶 𝑁(𝑋𝐶 𝐹 𝐼 ) (8)

where 𝑀 𝐿𝑃 (⋅) consists of multiple fully connected layers with GELU
activation functions. 𝐺 𝐶 𝑁(⋅) refers to Eq. (3).

3.4. Regression head and loss function

In the regression head, a simple linear layer without an activation
unction is applied to predict, based on the output 𝑋𝑜𝑢𝑡, the 3D joint

coordinates of the output pose 𝐽 , as shown in Fig. 2. The loss function
for our CFI network is thus given as:

 = 1
𝑁

𝑁
∑

𝑖=1
(‖𝐽𝑖 − 𝐽𝑖‖

2
2) (9)

where 𝐽𝑖 and 𝐽𝑖 ∈ R𝑁×3 denote the predicted and ground-truth 3D joint
oordinates, respectively.

4. Experiments

4.1. Datasets and evaluation metrics

Two benchmark datasets were used in experimental evaluation in
this study. Human3.6M [35] is an indoor scenes dataset with 3.6 mil-
lion video frames. It has 11 professional actors, performing 15 actions
under 4 synchronized camera views. Following previous work [20,22],
we used subjects 1, 5, 6, 7 and 8 for training, and subjects 9 and 11
for testing. Two standard evaluation metrics, namely the mean per-
joint position error (MPJPE) and the mean per-joint position error after
procrustes alignment (P-MPJPE) were used in the evaluation.

MPI-INF-3DHP [36] is also a public large-scale dataset, includ-
ng indoor and outdoor scenes. The test set comprises three distinct

scenarios: a studio with green screen (GS), a studio without green
screen (noGS), and outdoor scene (Outdoor). Following [20,22], the
area under the curve (AUC) and the percentage of correct keypoints
(PCK) were used as evaluation metrics. We employ the test set of this
ataset to verify the generalization capability of our model trained on
uman3.6M.

4.2. Implementation details

We implemented our method over the PyTorchTM [37] framework
on one NVIDIA GeForceTM RTX 3090 GPU. We stacked the Cross-
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Feature Interaction Network for 3 loops, i.e., 𝐿𝑑 = 3 in Fig. 2. We used
the Adam optimizer to train our model for 20 epochs using mini-batch
size of 512. The learning rate was initialized to 0.001 and decayed by
0.95 per epoch. We discuss the feature dimension and the number of
heads in Section 4.4.

4.3. Comparison with state-of-the-art methods

Human3.6M. Table 1 compares the single-image estimation ac-
curacy of our method with existing SOTA methods using 2D poses
detected by CPN [9] as inputs. As shown, our method outperforms other
OTA models and achieve the same performance of 49.4 mm of MPJPE
s Zou and Tang [17], which adopts a refinement module [6]. By apply-

ing the same refinement [6] to our model, the performance is improved
from 49.4 mm to 48.6 mm, surpassing MGCN [17] by 0.8 mm error
reduction. Moreover, our method obtains the best results of 38.8 mm
and 38.7 mm in terms of P-MPJPE. In Table 2, we compare our results

ith those SOTA methods using 2D ground-truth poses as inputs. Our
method attains SOTA performance, validating the effectiveness of our
method for different types of input.

MPI-INF-3DHP. Table 3 reports the quantitative comparisons of our
method with SOTA methods on cross-dataset scenarios. Our model was
trained on the Human3.6M dataset and subsequently evaluated on the
test set of the MPI-INF-3DHP dataset. The results show that our method
achieves the best PCK and AUC performance in noGS, Outdoor and All
scenarios. The PCK result in GS scenario is the second best. The possible
reason is that the indoor GS data is relatively simple and limited in
quantity, while the noGS and Outdoor data are more complex and
bundant. Our model trained on large Human3.6M dataset may suffer
rom overfitting problem in GS scenarios.

4.4. Ablation study

To examine the effectiveness of each proposed module, we con-
ducted ablation experiments on Human3.6M using 2D poses detected
by CPN [9] as inputs. Table 4 shows the results of the ablation study.
The vanilla transformer network, composed of the MHSA and MLP, is
utilized as our baseline. For consistency, the transformer network is
stacked for 3 loops, resulting in an overall accuracy of 51.9 mm MPJPE.
The notation CFI(⋅) indicates the application of CFI module to feature
epresentations of the said branch. For example, CFI(local) denotes the
pplication of CFI module to the local features, i.e., Eq. (7) has only

one component of 𝑋′
𝐿. The results show that the application of three

CFI modules, i.e., CFI(global), CFI(local) and CFI(initial), contribute
0.5 mm, 0.7 mm and 1.3 mm of error reduction, respectively. The
incorporation of three CFI modules can result in 4% improvement of
accuracy, reducing MPJPE from 51.9 mm to 49.8 mm. Table 4 also
shows that the initial features play a crucial role in the interaction
of local and global features, which brings the largest contribution of
accuracy improvement. This is because the initial features processed
by our CFI module can serve as an residual connection to effectively
compensate for the information loss that occurs during the layer-to-
layer propagation of the other two types of features. Lastly, by the
introduction of the GraMLP module on top of three CFI modules,
the estimation errors further drop 0.4 mm, achieving 49.4 mm of
MPJPE. The ablation experiments demonstrate the effectiveness of each
proposed module in our method.

Moreover, there are three hyper-parameters for our model (i.e., the
epth of network 𝐿𝑑 , the dimension of model D and the number
f heads H in attention blocks). We tested different values of these

parameters to verify which set of values yields the best results. As
shown in Table 5, our model with 𝐿𝑑 = 3, D = 512, H = 8 obtains
the best results.
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Table 1
Quantitative comparisons with SOTA methods of MPJPE and P-MPJPE based on Human3.6M with 2D poses detected by CPN [9] as inputs.

MPJPE (CPN) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [4]
(ICCV’17)

51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Zhao et al. [15] (CVPR’19) 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Ci et al. [5] (ICCV’19) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Liu et al. [16] (ECCV’20) 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu and Takano [7]
(CVPR’21)

45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9

Zhao et al. [22]
(CVPR’22)†

45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8

Cai et al. [6] (ICCV’19)∗ 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Li et al. [20] (AAAI’23)† 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 54.3 40.0 42.9 50.5
Zeng et al. [34] (ECCV’20) 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9
Zou and Tang [17]
(ICCV’21)∗

45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4

Ours† 45.4 49.5 46.1 49.3 51.7 56.7 47.3 44.6 58.6 63.0 50.4 47.2 51.8 38.2 41.3 49.4
Ours† ∗ 45.0 50.3 45.8 48.4 49.7 55.8 47.3 45.4 56.4 59.4 49.9 46.5 50.9 38.0 39.6 48.6

P-MPJPE (CPN) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [4]
(ICCV’17)

39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ci et al. [5] (ICCV’19) 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2
Liu et al. [16] (ECCV’20) 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Cai et al. [6] (ICCV’19)∗ 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2
Zeng et al. [34] (ECCV’20) 35.8 39.2 36.6 36.9 39.8 45.1 38.4 36.9 47.7 54.4 38.6 36.3 39.4 30.3 35.4 39.4
Zou and Tang [17]
(ICCV’21)∗

35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1

Ours† 35.3 37.8 36.8 40.1 40.1 43.6 36.2 34.3 46.4 50.2 40.8 35.6 41.1 30.0 34.0 38.8
Ours† ∗ 35.5 38.1 35.9 40.4 39.9 43.7 36.0 34.7 46.1 48.4 40.5 35.7 41.3 30.2 33.7 38.7

∗ denotes using the refinement module [6]. † indicates the transformer-based methods. Best results are showed in bold.
Table 2
Quantitative comparisons with SOTA methods of MPJPE based on Human3.6M with ground-truth (GT) 2D poses as inputs.

MPJPE (GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [4]
(ICCV’17)

37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Zhao et al. [15] (CVPR’19) 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Cai et al. [6] (ICCV’19)∗ 33.4 39.0 33.8 37.0 38.1 47.3 39.5 37.3 43.2 46.2 37.7 38.0 38.6 30.4 32.1 38.1
Zhu et al. [21] (IJCAI’21)† 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2
Liu et al. [16] (ECCV’20) 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Zou and Tang [17]
(ICCV’21)∗

– – – – – – – – – – – – – – – 37.4

Zeng et al. [34] (ECCV’20) 35.9 36.7 29.3 34.5 36.0 42.8 37.7 31.7 40.1 44.3 35.8 37.2 36.2 33.7 34.0 36.4
Xu and Takano [7]
(CVPR’21)

35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8

Zhao et al. [22]
(CVPR’22)†

32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2

Li et al. [20] (AAAI’23)† 32.9 38.3 28.3 33.8 34.9 38.7 37.2 30.7 34.5 39.7 33.9 34.7 34.3 26.1 28.9 33.8

Ours† 35.4 38.7 29.8 34.8 33.6 36.8 39.8 30.9 36.6 36.3 34.9 37.6 34.4 28.3 30.4 34.6
Ours† ∗ 29.1 37.1 29.5 31.8 33.2 41.1 36.0 29.8 38.2 39.3 33.3 36.2 35.8 27.3 28.6 33.7

∗ denotes using the refinement module [6]. † indicates the transformer-based methods. Best results are showed in bold.
Table 3
Quantitative comparisons with SOTA methods of PCK and AUC performance based on

PI-INF-3DHP.
Methods PCK ↑ AUC ↑

GS noGS Outdoor All

Martinez et al. [4] (ICCV’17) 49.8 42.5 31.2 42.5 17.0
Ci et al. [5] (ICCV’19) 74.8 70.8 77.3 74.0 36.7
Zeng et al. [34] (ECCV’20) – – 80.3 77.6 43.8
Zhao et al. [22] (CVPR’22) 80.1 77.9 74.1 79.0 43.8
Liu et al. [16] (ECCV’20) 77.6 80.5 80.1 79.3 47.6
Xu and Takano [7] (CVPR’21) 81.5 81.7 75.2 80.1 45.8
Li et al. [20] (AAAI’23) 86.2 84.7 81.9 84.1 53.7

Ours 85.0 86.1 85.7 85.6 54.0
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Table 4
Ablation study on the effectiveness of different modules.

CFI(initial) CFI(local) CFI(global) GraMLP MPJPE
𝑋′

𝐼 𝑋′
𝐿 𝑋′

𝐺 (mm)

51.9
✓ 51.0

✓ 50.6
✓ 51.2

✓ 51.4
✓ ✓ 50.2
✓ ✓ 50.5

✓ ✓ 50.6
✓ ✓ ✓ 49.8
✓ ✓ ✓ ✓ 49.4

✓indicates the corresponding module is being included.
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Table 5
Ablation study of hyperparameter setting. 𝐿𝑑 is the depth of the network, D is the
dimension of model, and H is the number of heads in attention blocks.
𝐿𝑑 D H MPJPE (mm) P-MPJPE (mm)

2 512 8 49.7 39.1
3 512 8 49.4 38.8
4 512 8 50.0 39.2

3 256 8 49.8 38.8
3 512 8 49.4 38.8
3 1024 8 49.7 39.0

3 512 4 49.6 39.0
3 512 8 49.4 38.8
3 512 16 49.8 39.1

Fig. 4. Qualitative comparison with MGCN [17] on Human3.6M dataset. The red
numbers represent the MPJPE errors.

Fig. 5. Results of 3D pose estimation with in-the-wild input images.

4.5. Qualitative results

We visualize some 3D pose estimation results to validate the efficacy
of our method in comparison to MGCN [17] in Fig. 4. The red numbers
represent the MPJPE errors for the joints in the green circled areas
(e.g., hands, legs). As shown, we can achieve more accurate 3D pose
predictions compared to MGCN [17]. Moreover, we collected some in-
the-wild images to test and validate the applicability of our method to
real-world situation, as shown in Fig. 5.
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5. Conclusions and future work

In this paper, we develop a Cross-Feature Interaction Network for
3D human pose estimation, which contains two core modules, namely
the cross-feature interaction (CFI) module and the GraMLP module.
In our CFI network, local features and global features are first ex-
tracted by GCN and MHSA, respectively. Next, the CFI module can
facilitate communication among three types of features (initial, local,
and global). The GraMLP module, a parallel structure with GCN and
MLP, then aggregates the resulting enhanced features in a single layer,
generating the final representation of 3D pose. Experimental results on
two benchmarks have demonstrated the effectiveness of our method for
single-frame 3D pose estimation.

Although our method has achieved promising results, the perfor-
mance of our model trained on Human3.6M may not generalize well
on diverse scenes and actions. This is because the Human3.6M dataset
is somehow recorded in relatively homogeneous environments and
with limited human actions. In the future, we will explore domain
adaptation and use of synthetic poses to improve the generalization of
our method.
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