Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111163
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorGao, Y-
dc.creatorWang, C-
dc.creatorXue, X-
dc.date.accessioned2025-02-17T01:37:45Z-
dc.date.available2025-02-17T01:37:45Z-
dc.identifier.issn0022-2488-
dc.identifier.urihttp://hdl.handle.net/10397/111163-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2023 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Gao, Y., Wang, C., & Xue, X. (2023). Global existence and spatial analyticity for a nonlocal flux with fractional diffusion. Journal of Mathematical Physics, 64(9) and may be found at https://doi.org/10.1063/5.0151230.en_US
dc.titleGlobal existence and spatial analyticity for a nonlocal flux with fractional diffusionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage091506-1-
dc.identifier.epage091506-32-
dc.identifier.volume64-
dc.identifier.issue9-
dc.identifier.doi10.1063/5.0151230-
dcterms.abstractIn this paper, we study a one dimensional nonlinear equation with diffusion − ν ( − ∂ x x ) α 2 for 0 ≤ α ≤ 2 and ν > 0. We use a viscous-splitting algorithm to obtain global nonnegative weak solutions in space L 1 ( R ) ∩ H 1 / 2 ( R ) when 0 ≤ α ≤ 2. For the subcritical case 1 < α ≤ 2 and critical case α = 1, we obtain the global existence and uniqueness of nonnegative spatial analytic solutions. We use a fractional bootstrapping method to improve the regularity of mild solutions in the Bessel potential spaces for the subcritical case 1 < α ≤ 2. Then, we show that the solutions are spatial analytic and can be extended globally. For the critical case α = 1, if the initial data ρ0 satisfies −ν < inf ρ0 < 0, we use the method of characteristics for complex Burgers equation to obtain a unique spatial analytic solution to our target equation in some bounded time interval. If ρ0 ≥ 0, the solution exists globally and converges to steady state.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical physics, Sept 2023, v. 64, no. 9, 091506, p. 091506-1 - 091506-32-
dcterms.isPartOfJournal of mathematical physics-
dcterms.issued2023-09-
dc.identifier.scopus2-s2.0-85173145206-
dc.identifier.eissn1089-7658-
dc.identifier.artn091506-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation; Start-up fund from the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
091506_1_5.0151230.pdf5.2 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.