Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/111163
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Gao, Y | - |
| dc.creator | Wang, C | - |
| dc.creator | Xue, X | - |
| dc.date.accessioned | 2025-02-17T01:37:45Z | - |
| dc.date.available | 2025-02-17T01:37:45Z | - |
| dc.identifier.issn | 0022-2488 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/111163 | - |
| dc.language.iso | en | en_US |
| dc.publisher | AIP Publishing LLC | en_US |
| dc.rights | © 2023 Author(s). Published under an exclusive license by AIP Publishing. | en_US |
| dc.rights | This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Gao, Y., Wang, C., & Xue, X. (2023). Global existence and spatial analyticity for a nonlocal flux with fractional diffusion. Journal of Mathematical Physics, 64(9) and may be found at https://doi.org/10.1063/5.0151230. | en_US |
| dc.title | Global existence and spatial analyticity for a nonlocal flux with fractional diffusion | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 091506-1 | - |
| dc.identifier.epage | 091506-32 | - |
| dc.identifier.volume | 64 | - |
| dc.identifier.issue | 9 | - |
| dc.identifier.doi | 10.1063/5.0151230 | - |
| dcterms.abstract | In this paper, we study a one dimensional nonlinear equation with diffusion − ν ( − ∂ x x ) α 2 for 0 ≤ α ≤ 2 and ν > 0. We use a viscous-splitting algorithm to obtain global nonnegative weak solutions in space L 1 ( R ) ∩ H 1 / 2 ( R ) when 0 ≤ α ≤ 2. For the subcritical case 1 < α ≤ 2 and critical case α = 1, we obtain the global existence and uniqueness of nonnegative spatial analytic solutions. We use a fractional bootstrapping method to improve the regularity of mild solutions in the Bessel potential spaces for the subcritical case 1 < α ≤ 2. Then, we show that the solutions are spatial analytic and can be extended globally. For the critical case α = 1, if the initial data ρ0 satisfies −ν < inf ρ0 < 0, we use the method of characteristics for complex Burgers equation to obtain a unique spatial analytic solution to our target equation in some bounded time interval. If ρ0 ≥ 0, the solution exists globally and converges to steady state. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of mathematical physics, Sept 2023, v. 64, no. 9, 091506, p. 091506-1 - 091506-32 | - |
| dcterms.isPartOf | Journal of mathematical physics | - |
| dcterms.issued | 2023-09 | - |
| dc.identifier.scopus | 2-s2.0-85173145206 | - |
| dc.identifier.eissn | 1089-7658 | - |
| dc.identifier.artn | 091506 | - |
| dc.description.validate | 202502 bcch | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_Others | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | National Natural Science Foundation; Start-up fund from the Hong Kong Polytechnic University | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 091506_1_5.0151230.pdf | 5.2 MB | Adobe PDF | View/Open |
Page views
11
Citations as of Apr 14, 2025
Downloads
2
Citations as of Apr 14, 2025
SCOPUSTM
Citations
1
Citations as of Dec 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



