Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111059
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorHe, Jen_US
dc.creatorWang, Pen_US
dc.creatorDu, Fen_US
dc.creatorWen, Ken_US
dc.creatorJiang, Yen_US
dc.creatorTang, Cen_US
dc.creatorDeng, Cen_US
dc.creatorLi, Men_US
dc.creatorHu, Qen_US
dc.creatorTao, Nen_US
dc.creatorXiang, Pen_US
dc.creatorCheng, Ken_US
dc.creatorWang, Qen_US
dc.creatorLi, Gen_US
dc.creatorYu, Hen_US
dc.date.accessioned2025-02-17T01:37:02Z-
dc.date.available2025-02-17T01:37:02Z-
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/10397/111059-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2024 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in JiaQi He, PeiRan Wang, FangZhou Du, KangYao Wen, Yang Jiang, ChuYing Tang, ChenKai Deng, MuJun Li, QiaoYu Hu, Nick Tao, Peng Xiang, Kai Cheng, Qing Wang, Gang Li, HongYu Yu; Improved breakdown performance in recessed-gate normally off GaN MIS-HEMTs by regrown fishbone trench. Appl. Phys. Lett. 25 March 2024; 124 (13): 132104 and may be found at https://dx.doi.org/10.1063/5.0193734.en_US
dc.titleImproved breakdown performance in recessed-gate normally off GaN MIS-HEMTs by regrown fishbone trenchen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage132104-1en_US
dc.identifier.epage132104-5en_US
dc.identifier.volume124en_US
dc.identifier.issue13en_US
dc.identifier.doi10.1063/5.0193734en_US
dcterms.abstractThis work develops a regrown fishbone trench (RFT) structure in selective area growth (SAG) technique to fabricate recessed-gate normally off GaN metal–insulator–semiconductor high electron mobility transistors (MIS-HEMTs). The RFT structure effectively modulates the electric field at high drain and gate biases, thus allowing the device to feature improved off-state and gate breakdown performance with a high positive Vth of 2 V. The simulated carrier concentration and electric field distributions reveal the mechanism of electric field weakening by RFT architecture. Meanwhile, the current collapse phenomenon is significantly suppressed, and the gate voltage swing is also enlarged. The maximum gate drive voltage of 9.2 V for 10-year reliability of RFT GaN MIS-HEMT, together with the improved linearity and block voltage, broadens the applications of SAG devices. Furthermore, the RFT structure also provides an etching-free method for fabricating normally off GaN MIS-HEMTs with multi-dimensional gates.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 25 Mar. 2024, v. 124, no. 13, 132104, p. 132104-1 - 132104-5en_US
dcterms.isPartOfApplied physics lettersen_US
dcterms.issued2024-03-25-
dc.identifier.scopus2-s2.0-85189097217-
dc.identifier.eissn1077-3118en_US
dc.identifier.artn132104en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Research on mechanism of source/drain Ohmic contact and the related GaN p-FET; Study on the reliability of GaN power devices; Research on novelty lowresistance source/drain Ohmic contact for GaN p-FET; Research on high-reliable GaN power device and the related industrial power system; Natural Science Foundation for Young Scientists of Jiangsu Provinceen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
132104_1_5.0193734.pdf2.75 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.