Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110246
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Cen_US
dc.creatorChen, Xen_US
dc.date.accessioned2024-12-02T02:20:51Z-
dc.date.available2024-12-02T02:20:51Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/110246-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Li, C., & Chen, X. (2024). Spherical Designs for Approximations on Spherical Caps. SIAM Journal on Numerical Analysis, 62(6), 2506-2528 is available at https://doi.org/10.1137/23m1555417.en_US
dc.subjectNonsmooth optimization,en_US
dc.subjectSparse approximationen_US
dc.subjectSpherical capsen_US
dc.subjectSpherical designen_US
dc.titleSpherical designs for approximations on spherical capsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2506en_US
dc.identifier.epage2528en_US
dc.identifier.volume62en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1137/23M1555417en_US
dcterms.abstractA spherical t-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most t and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap t-subdesign on a spherical cap C(e3,r) with center e3=(0,0,1)⊤ and radius r∈(0,π) induced by the spherical t-design. We show that the spherical cap t-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most t and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most t. We apply the spherical cap t-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap t-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with r=0.5π. Our theoretical and numerical results show that spherical cap t-subdesigns can provide a good approximation on spherical caps.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2024, v. 62, no. 6, p. 2506-2528en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2024-
dc.identifier.eissn1095-7170en_US
dc.description.validate202411 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3301-
dc.identifier.SubFormID49896-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; NSF of Shanxi Province; CAS-Croucher Funding Scheme for AMSS-PolyU Joint Laboratoryen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1555417.pdf2.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

20
Citations as of Apr 14, 2025

Downloads

117
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.