Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109726
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLuo, L-
dc.creatorHan, R-
dc.creatorLin, Y-
dc.creatorHuang, J-
dc.date.accessioned2024-11-08T06:11:39Z-
dc.date.available2024-11-08T06:11:39Z-
dc.identifier.urihttp://hdl.handle.net/10397/109726-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rightsCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Lan, L., Ruijian, H., Yuanyuan, L., & Jian, H. (2023). Online inference in high-dimensional generalized linear models with streaming data. Electronic Journal of Statistics, 17(2), 3443-3471 is available at https://doi.org/10.1214/23-EJS2182.en_US
dc.subjectConfidence intervalen_US
dc.subjectGeneralized linear modelsen_US
dc.subjectHigh-dimensional dataen_US
dc.subjectOnline debiased lassoen_US
dc.titleOnline inference in high-dimensional generalized linear models with streaming dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3443-
dc.identifier.epage3471-
dc.identifier.volume17-
dc.identifier.issue2-
dc.identifier.doi10.1214/23-EJS2182-
dcterms.abstractIn this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for real-time estimation and inference. We propose an online debiased lasso method that aligns with the data collection scheme of streaming data. Online debiased lasso differs from offline debiased lasso in two important aspects. First, it updates component-wise confidence intervals of regression coefficients with only summary statistics of the historical data. Second, online debiased lasso adds an additional term to correct approximation errors accumulated throughout the online updating procedure. We show that our proposed online debiased estimators in generalized linear models are asymptotically normal. This result provides a theoretical basis for carrying out real-time interim statistical inference with streaming data. Extensive numerical experiments are conducted to evaluate the performance of our proposed online debiased lasso method. These experiments demonstrate the effectiveness of our algorithm and support the theoretical results. Furthermore, we illustrate the application of our method with a high-dimensional text dataset.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic journal of statistics, 2023, v. 17, no. 2, p. 3443-3471-
dcterms.isPartOfElectronic journal of statistics-
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85178389729-
dc.identifier.eissn1935-7524-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Institute on Aging of the National Institutes of Health; Startup Funds from Rutgers School of Public Health; Hong Kong Polytechnic University; National Natural Science Foundation of China; Chinese University of Hong Kongen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23-EJS2182.pdf463.55 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

8
Citations as of Nov 17, 2024

Downloads

8
Citations as of Nov 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.