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Abstract: In this paper we develop an online statistical inference approach
for high-dimensional generalized linear models with streaming data for real-
time estimation and inference. We propose an online debiased lasso method
that aligns with the data collection scheme of streaming data. Online de-
biased lasso differs from offline debiased lasso in two important aspects.
First, it updates component-wise confidence intervals of regression coeffi-
cients with only summary statistics of the historical data. Second, online
debiased lasso adds an additional term to correct approximation errors ac-
cumulated throughout the online updating procedure. We show that our
proposed online debiased estimators in generalized linear models are asymp-
totically normal. This result provides a theoretical basis for carrying out
real-time interim statistical inference with streaming data. Extensive nu-
merical experiments are conducted to evaluate the performance of our pro-
posed online debiased lasso method. These experiments demonstrate the
effectiveness of our algorithm and support the theoretical results. Further-
more, we illustrate the application of our method with a high-dimensional
text dataset.
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1. Introduction

Streaming data refers to the type of data that is generated continuously over
time, typically in high volumes and at high velocity. It includes a wide variety of
data types such as log files generated by mobile or web applications, ecommerce
purchases, information from social networks, and financial trading floors. To
reduce the demand on computing memory and achieve real-time processing, the
nature of streaming data calls for the development of incremental algorithms
that do not require access to the full dataset. In this paper, we focus on the
generalized linear models in a high-dimensional regression setting. We develop a
real-time estimation and inference procedure that is highly scalable with respect
to fast growing data volumes, but with no loss of efficiency in statistical inference
in the presence of a large number of features.

Streaming data processing essentially falls into the field of online learning.
This line of research can be dated back seven decades to Robbins and Monro
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[21], who proposed a stochastic approximation algorithm that laid a foundation
for the popular stochastic gradient descent (SGD) algorithm [22]. The SGD
algorithm and its variants have been extensively studied for online estimation
and prediction [28], but the work of developing online statistical inference re-
mains unexplored. A recent paper by Fang [11] proposed a perturbation-based
resampling method to construct confidence intervals for SGD, but it does not
achieve desirable statistical efficiency and may produce misleading inference in
high-dimensional settings. In addition to the SGD types of recursive algorithms,
several online updating methods have been proposed to specifically perform se-
quential updating of regression coefficient estimators, including the online least
squares estimator for the linear model, the cumulative estimating equation es-
timator, the cumulatively updated estimating equation estimator by Schifano
et al. [23] and the renewable estimator by Luo and Song [18] for nonlinear mod-
els.

Most of the aforementioned online algorithms are developed under low dimen-
sional settings where the number of features is far less than the total sample
size. However, a prominent concern in high-dimensional streaming data analy-
sis is that only a subset of the variables have nonzero coefficients. Besides the
small sample size issue at the early stage of data collection, processing such data
stream without properly accounting for the sparsity in feature set may intro-
duce significant bias and invalid statistical inference. It is worth noting that even
if the cumulative sample size exceeds the number of features as time goes by,
traditional estimation methods in low-dimensional settings such as maximum
likelihood estimation (MLE) may still incur large bias especially in generalized
linear models [26]. Therefore, current state-of-art online learning algorithms
in low-dimensional settings may be insufficient for processing high-dimensional
data streams.

In the traditional offline settings, many methods have been developed for
analyzing high-dimensional static data. Most of the work on variable selec-
tion in high dimensional regression problems is along the line of lasso [27],
the Smoothly Clipped Absolute Deviation (SCAD) penalty [10], and the mini-
max convex penalty (MCP) [31]. However, variable selection methods focus on
point estimation without quantifying the uncertainty in estimates. Later on,
statistical inference problems in high-dimensional settings, including interval
estimation and hypothesis testing, have attracted much attention since the pi-
oneering works of Zhang and Zhang [32], van de Geer et al. [30], Javanmard
and Montanari [16], among others. Recently, a novel splitting and smoothing
inference approach for high-dimensional generalized linear models was proposed
by Fei and Li [12].

While significant progress has been made on statistical inference for high
dimensional regression problems under the traditional offline settings, variable
selection and statistical inference for high-dimensional models with streaming
data is still at its infancy stage. Sun et al. [25] introduced a systematic framework
for online variable selection based on some popular offline methods such as MCP.
But their focus is not on statistical inference. Different from this work, there
are some existing methods considering the problem of inference. For example,
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Deshpande, Javanmard and Mehrabi [7] proposed a class of online estimators
for high-dimensional auto-regressive models. One of the most relevant works is a
novel inference procedure in generalized linear models based on recursive online-
score estimation [24]. However, in both works, the entire dataset is assumed
to be available at an initial stage for computing an initial estimator, e.g. the
lasso estimator; thereafter, a recursively forward bias correction procedure is
conducted along sequentially arrived data points. However, the availability of
the entire dataset at an initial stage is not a natural setup in online learning.
To address this issue, Han et al. [14] proposed an online debiased lasso method
for statistical inference in high-dimensional linear models with streaming data.

Unlike the case of high-dimensional linear models where the loss function
depends on data only through sufficient statistics [14], parameters and data are
not linearly separable in generalized linear models. Motivated by the renew-
able estimation method in low-dimensional generalized linear models [18], we
start off by taking a first-order Taylor expansion on the quadratic loss func-
tion to bypass the need of historical individual-level data. The key idea centers
around using “approximate summary statistics” resulting from Taylor expan-
sions. However, this is not a trivial extension of the methods developed un-
der low-dimensional settings. In high-dimensional settings where predictors are
spuriously correlated, a data-splitting strategy is typically used for decorrela-
tion where variable selection and estimation are conducted using two different
sub-datasets [24, 12]. A prominent concern of using such approximate sum-
mary statistics that involve previous estimates is that it may incur dependency
in the corresponding estimating equation. Theoretically speaking, the depen-
dency among recursively updated estimators poses extra technical challenge in
establishing the non-asymptotic error bound. In our proposed online method
for real-time confidence interval construction, we aim to address the following
questions: (i) what types of approximate summary statistics to be stored to
carry out an online debiasing procedure? (ii) will the error accumulate along
the updating steps if we use the approximate summary statistics? (iii) will the
online debiasing procedure maintain similar oracle properties to its offline coun-
terpart? and (iv) how to choose the tuning parameter adaptively in an online
setting where cross-validation that relies on splitting the entire dataset is not
feasible.

The focus of this paper is to develop an online debiased lasso estimator in
high-dimensional generalized linear models with streaming datasets for real-
time estimation and inference. Our new contributions include: (i) we propose a
two-stage online estimation and debiasing framework that aligns with streaming
data collection scheme; (ii) online debiased lasso accounts for sparsity feature
in a candidate set of predictors and provides valid statistical inference results;
and (iii) online debiased lasso estimators for the generalized linear models are
shown to be asymptotically normal. This result provides a theoretical basis for
carrying out real-time interim statistical inference with streaming data. Online
debiased lasso is inspired by the offline debiased lasso method [32, 30, 16], how-
ever, it differs from the offline debiased lasso in two important aspects. First,
in computing the estimate at the current stage, it only uses summary statistics
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of the historical data. Second, in addition to debiasing an online lasso estima-
tor, online debiased lasso corrects an approximation error term arising from
online updating with streaming data. This correction is crucial to guarantee the
asymptotic normality of the online debiased lasso estimator.

This paper is organized as follows. Section 2 introduces the model formu-
lation followed by our proposed online two-stage debiasing method to process
high-dimensional streaming data. Section 3 includes some large sample proper-
ties concerning the theoretical guarantees for our proposed method. Simulation
experiments are given in Section 4 to evaluate the performance of our proposed
method in comparison to both MLE and offline debiased estimator. We illustrate
the proposed online debiased lasso method and apply it to analyze a real data
example in Section 5. Finally, we make some concluding remarks in Section 6.
All technical proofs are provided in the supplementary material.

1.1. Notation

For a matrix X ∈ R
n×p, we let Xi·,X·j and Xij denote the i-th row, j-th

column and (i, j)-element of matrix X. Xi,−j is a sub-vector of Xi· with the
j-th element deleted and X−i,−j is a sub-matrix of X with the i-th row and the
j-th column deleted while other elements remain unchanged. For a sequence of
random variables {ξn}n∈N and a corresponding sequence of constants {an}n∈N.
We say that ξn = Op(an) if for any ε > 0, there exist two finite numbers M,N >
0 such that P (|ξn/an| > M) < ε for any n > N . Generally speaking, ξn =
Op(an) denotes ξn/an is stochastically bounded. ξn = op(an) means that ξn/an
converges to zero in probability. With the consideration of the streaming data,
we use X(j) and Y (j) to stand for X and y, arriving in j-th batch respectively.
In addition, X(j)

� and Y
(j)
� (with star index) are the cumulative variables of

X(j) and Y (j). For example, X(j)
� = ((X(1))�, . . . , (X(j))�)�. For a matrix A ∈

R
n×n, let Λmax(A) and Λmin(A) denote the maximum and minimum eigenvalues

of A respectively.

2. Methodology

In this section, we describe the proposed estimation method with streaming
data, including online lasso estimation and online debiased lasso estimation.
With the consideration of practical implementation, we also provide an adap-
tive tuning method to select the regularization parameter. A rundown of our
algorithm is summarized at the end of this section.

Consider up to a time point b ≥ 2, there is a total of Nb samples arriving in
a sequence of b data batches, denoted by D�

b = {D1, . . . ,Db}, and each contains
nj = |Dj | samples, j = 1, . . . , b. Assume each observation yi is independently
sampled from the generalized linear model with density function

f(y | x;β0) = a(y) exp
{
yxβ0 − g(xβ0)

φ0

}
,
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where g(·) is a convex function and φ0 is a fixed and known parameter, and a(·)
is a normalizing factor. The underlying regression coefficient β0 ∈ R

p is of our
interest, which is assumed to be sparse with s0 nonzero elements. Specifically,
we let S0 = {r : β0

r �= 0} be the active set of variables and its cardinality is s0.
Our main goal is to conduct point-wise statistical inference for the components
of the parameter vector β0

r (r = 1, . . . , p) upon the arrival of every new data
batch Dj , j = 1, 2, . . . , b. The log-likelihood function for the cumulative dataset
D�

b is

�(β;D�
b ) = 1

Nb

∑
i∈D�

b

log f(yi | xi,β)

= 1
Nb

∑
i∈D�

b

log a(yi) −
1

2Nbφ0

∑
i∈D�

b

{g(xiβ) − yixiβ}.

Based on D�
b , the standard offline lasso estimator is defined as

β̄(b) = arg min
β∈Rp

⎧⎨⎩ 1
2Nb

∑
i∈D�

b

{g(xiβ) − yixiβ} + λb‖β‖1

⎫⎬⎭ , (2.1)

where Nb =
∑b

j=1 nj is the cumulative sample size and λb is the regularization
parameter. However, as discussed in Luo and Song [18] and Han et al. [14], the
classical lasso estimator obtained through minimizing equation (2.1) requires
re-accessing the historical raw data D�

b−1 which is not preferable in an online
setting. Therefore, an online estimation and debiasing procedure needs to be
developed for real-time estimation and inference with high-dimensional stream-
ing data. For the sake of clarity, we refer to the lasso estimator in (2.1) as the
offline lasso estimator. Sections 2.1 and 2.2 are devoted to the construction of
the online lasso estimator and the online debiased method, respectively.

2.1. Online lasso estimator

We first consider an online lasso estimator through the gradient descent method.
Define the score function as u(yi;xi,β) = ∇β {g(xiβ) − yixiβ} = x�

i (g′(xiβ)−
yi), and the aggregated score function for the cumulative dataset D�

b is Ū (b)(β) =∑
i∈D�

b
u(yi;xi,β). Let U (j)(β) =

∑
i∈Dj

u(yi;xi,β) be the score function for
data batch Dj , and Ū (b)(β) can be rewritten as Ū (b)(β) =

∑b
j=1 U

(j)(β). To de-
rive an online estimator upon the arrival of Db, a key step is to update Ū (b−1)(β)
to Ū (b)(β) without re-accessing the cumulative historical raw data D�

b−1.
To illustrate the idea, we first consider a simple case with two data batches,

that is, D2 arrives after D1. The lasso estimator based on the first batch data is
denoted by β̂(1), which is the offline estimator β̄(1) that minimizes the objective
function in equation (2.1). To avoid using individual-level raw data in D1, we
approximate U (1)(β) through a first-order Taylor expansion at β̂(1), that is,

U (1)(β) = U (1)(β̂(1)) + J (1)(β̂(1))(β − β̂(1)) + N1Op(‖β − β̂(1)‖2
2),
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where J (1)(β) = ∂U (1)(β)/∂β. It is worth noting that β̂(1) is not the solution
of U (1)(β) = 0. Nonetheless, according to the Karush-Kuhn-Tucker (KKT) con-
ditions, β̂(1) satisfies ‖U (1)(β̂(1))‖∞ = Op(λ1N1), which will be much smaller
than N1 with a proper choice of λ1. As a result, we can approximate U (1)(β)
by J (1)(β̂(1))(β − β̂(1)).

Recall that Ū (2)(β) = U (1)(β)+U (2)(β). We further propose to approximate
Ū (2)(β) by

Û (2)(β) = J (1)(β̂(1))(β − β̂(1)) + U (2)(β).

Apparently, calculating Û (2)(β) only requires access to the summary statistics
{β̂(1), J (1)(β̂(1))} rather than the individual-level data in D1.

The above approximation could be further generalized to an arbitrary data
batch Db. Let Ĵ (b−1) =

∑b−1
j=1 J

(j)(β̂(j)) denote the aggregated information ma-
trix. Here, we evaluate each batch-specific information matrix J (j) by plugging
in β̂(j) rather than β̂(b) to avoid retrospective calculations. Then the approxi-
mation procedure becomes

Û (b)(β) =

⎧⎨⎩
b−1∑
j=1

J (j)(β̂(j))

⎫⎬⎭ (β − β̂(b−1)) + U (b)(β)

= Ĵ (b−1)(β − β̂(b−1)) + U (b)(β).

The aggregated gradient Û (b)(β) depends only on {β̂(b−1), Ĵ (b−1)}. Hence, we
compute β̂(b) through the following procedure.

• Step 1: update β̂(b) through gradient descent with learning rate η:

β̂(b) ← β̂(b) + [ηÛ (b)(β̂(b))/2Nb]. (2.2)

• Step 2: apply the soft-thresholding operator S(x; ηλb) to each component
of β̂(b) obtained in Step 1, where S(x; ηλb) = sgn(x)(|x| − ηλb)+ and λb

is the regularization parameter for step b, that is,

β̂(b)
r ← S(β̂(b)

r ; ηλb), r = 1, . . . , p. (2.3)

The above two steps are carried out iteratively till convergence to obtain the on-
line lasso estimator β̂(b). This is an online modification and extension of the iter-
ative shrinkage-thresholding algorithm (ISTA) for the generalized linear models
[6, 3]. In this algorithm, gradient descent is combined with soft-thresholding [9]
to produce a sequence of sparse solutions. It is an online algorithm where the
iterations proceed along with new samples rather than a fixed dataset. In the im-
plementation, we set the stopping criterion to be ‖η×Û (b)(β̂(b))/2Nb‖2 ≤ 10−6.
In summary, our proposed online estimator β̂(b) can be defined as

β̂(b) = arg min
β∈Rp

[
1

2Nb

{ ∑
i∈Db

{g(xiβ) − yixiβ}
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+ 1
2(β − β̂(b−1))�Ĵ (b−1)(β − β̂(b−1))

}
+ λb‖β‖1

]
. (2.4)

In contrast to the standard offline lasso estimator in (2.1), our proposed online
estimator in (2.4) depends on the data only through the summary statistics
{β̂(b−1), Ĵ (b−1)} instead of D�

b−1.

2.2. Online debiased lasso

We now proceed to study the online statistical inference and construct con-
fidence intervals for the r-th component of the regression parameter vector,
r = 1, . . . , p. However, as pointed out by [33] and [4], the lasso-type estima-
tor is not root-n consistent and does not have a tractable limiting distribution
in the high-dimensional setting. An additional debiased step is needed. To do
that, we define the following estimator that will be used in the low-dimensional
projection:

γ̂(b)
r = arg min

γ∈R(p−1)

{
1

2Nb

(
Ĵ (b)
r,r − 2Ĵ (b)

r,−rγ + γ�Ĵ
(b)
−r,−rγ

)
+ λb‖γ‖1

}
. (2.5)

where Nb and λb are the same as in (2.4). Letting Ŵ (j) ∈ R
nj×nj be the diagonal

matrix with diagonal elements
√

g′′(X(j)β̂(j)), where g′′(·) is the second deriva-
tive of the function g(·), and X̂(j) be the weighted design matrix Ŵ (j)X(j).
Equation (2.5) can be further recast into

γ̂(b)
r = arg min

γ∈R(p−1)

⎧⎨⎩ 1
2Nb

b∑
j=1

∥∥∥X̂(j)
·r − X̂

(j)
·−rγ

∥∥∥2

2
+ λb‖γ‖1

⎫⎬⎭ . (2.6)

It is worth noting that γ̂
(b)
r can be computed in a similar way to the online

lasso estimator defined in equation (2.4). Specifically, (2.6) has the same form
as (2.1) if we choose the function g(t) = t2/2. It implies that we can compute
γ̂

(b)
r according to the procedure (2.2)–(2.3) in Section 2.1. To solve (2.6) in the

online fashion as (2.2)–(2.3), the summary statistic is (Ĵ (b)
r,−r, Ĵ

(b)
−r,−r), which has

been stored as Ĵ (b) in previous lasso estimation step. Besides that, we introduce
two notations: τ̂ (b)

r = Ĵ
(b)
r,r − Ĵ

(b)
r,−rγ̂

(b)
r and γ̃

(j)
r = (γ̂(j)

r,1 , . . . ,−1, . . . , γ̂(j)
r,p)� ∈ R

p,
whose r-th element is −1. Then, upon the arrival of the batch data Db, we define
the online debiased lasso estimator as

β̂(b)
on,r = β̂(b)

r − 1
τ̂

(b)
r

[
{γ̃(b)

r }�
b∑

j=1
{X(j)}�

{
y(j) − g′(X(j)β̂(j))

}

+ {γ̃(b)
r }�

b∑
j=1

J (j)(β̂(j)){β̂(j) − β̂(b)}
]
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≡ β̂(b)
r + debiasing term + online error correction term. (2.7)

The debiased lasso estimator involves the initial lasso estimator defined in (2.4),
as well as two additional terms: a debiasing term and an online error correction
term. van de Geer et al. [30] studied the offline version of debiased lasso for
generalized linear models. Our debiased term can be viewed as an online gen-
eralization of the offline counterpart in van de Geer et al. [30]. However, they
are fundamentally different because the debiasing term in (2.7) is not sufficient
to establish the asymptotic normality of β̂(b)

on,r. As we used β̂(j) to approximate
β̂(b), the approximation error accumulates even if each β̂(j), j = 1, . . . , b, is con-
sistent to β0. The additional “online error correction term” in (2.7) is used to
eliminate the approximation error arising from the online updates where we
do not do retrospective calculations by plugging β̂(b) into g′(X(j)β̂(j))’s for
j = 1, . . . , b− 1.

Meanwhile, the proposed debiased lasso estimator with the online error cor-
rection term aligns with the online learning framework, as (2.7) only requires
the following summary statistics rather than the entire dataset D�

b :

M
(b)
1 =

b∑
j=1

{X(j)}�
{
y(j) − g′(X(j)β̂(j))

}
, M

(b)
2 =

b∑
j=1

J (j)(β̂(j))β̂(j), (2.8)

which keep the same size when new data arrive, and can be easily updated.
Then, (2.7) could be written as

β̂(b)
on,r = β̂(b)

r − {γ̃(b)
r }�

τ̂
(b)
r

{M (b)
1 + M

(b)
2 − Ĵ (b)β̂(b)}.

The asymptotic normality of the online debiased lasso and the oracle inequal-
ity of two lasso-typed estimators in (2.4) and (2.5) are established in Section 3.
For variance estimation, let

v̂(b) = {γ̃(b)
r }�Ĵ (b)γ̃(b)

r . (2.9)

The estimated standard error σ̂
(b)
r = {v̂(b)}1/2/τ̂

(b)
r can also be updated online

accordingly.

2.3. Practical guidance: adaptive tuning

In an offline setting, the regularization parameter λ is typically determined by
cross-validation where the entire dataset is split into training and test sets mul-
tiple times. However, since the full dataset is not accessible in an online setting,
such a procedure is not feasible. To align with the nature of streaming datasets,
we use the “rolling-original-recalibration” procedure with the mean squared pre-
diction error (MSPE) as the cross-validation criterion [14], as practical guidance
for choosing tuning parameters. Specifically, we define a sequence of candidate
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sets, that is, Tλ,1 and Tλ,j = {a/
√
Nj : a ∈ Tλ,1}, j = 2, . . . , b. The construction

of Tλ,j aligns with the rate O(
√

log(p)/Nj) of tuning parameter in Theorem 1.
At time point b, the cumulative dataset up to time point b − 1 serves as the
training set while the new data batch Db is the test set. It is worth noting that
for every λ ∈ Tλ,j where Tλ,j is the candidate set, we update the lasso esti-
mates β̂(j)(λ) along j = 1, . . . , b − 1 and save the most recent one, denoted by
β̂(b−1)(λ). Therefore, as we proceed to step b, instead of re-accessing raw data
{D1, . . . ,Db−1}, we plug in β̂(b−1)(λ) to evaluate the MSPE defined below:

MSPEb(λ) = n−1
b

∥∥∥y(b) − g′
(
X(b)β̂(b−1)(λ)

)∥∥∥2

2
, λ ∈ Tλ,b, (2.10)

and choose λ such that λb = arg minλ∈Tλ,b
MSPEb(λ). In calculating MSPEb(λ),

we plug in β̂(b−1) rather than β̂(b) because the latter involves the test set Db

and may lead to an issue of over-fitting. The initial λ1 is selected by the classical
offline cross-validation.

2.4. Algorithm

We present the procedure discussed in Sections 2.1–2.3 in Figure 1 and Algo-
rithm 1. It consists of two main blocks: one is online lasso estimation and the
other is online low-dimensional projection. Outputs from both blocks are used to
compute the online debiased lasso estimator as well as the construction of con-
fidence intervals in real-time. In particular, when a new data batch Db arrives,
it is first sent to the online lasso estimation block, where the summary statis-
tics {β̂(b−1), Ĵ (b−1)} are used to compute Û (b). Then we use gradient descent
to update the lasso estimator β̂(b−1) to β̂(b) at a sequence of tuning parameter
values without retrieving the whole dataset. At the same time, regarding the
cumulative dataset that produces the old lasso estimate β̂(b−1) as training set
and the newly arrived Db as test set, we can choose the tuning parameter λb

that gives the smallest prediction error. Now, the selected λb and sub-matrices
of Ĵ (b) are passed to the low-dimensional projection block for the calculation of
γ̂

(b)
r (λb). The resulting projection τ̂

(b)
r from the low-dimensional projection block

together with the lasso estimator β̂(b) will be used to compute the debiased lasso
estimator β̂

(b)
on,r and its estimated standard error σ̂

(b)
r .

Algorithm 1. Online debiased lasso algorithm in generalized linear models.
For b = 1, 2, . . .

Receive the streaming dataset Db;
For a sequence of λ ∈ Tλ,b, update online lasso estimator β̂(b)(λ) defined in (2.4)
Determine λb from λb = arg minλ∈Tλ,b

MSPEb(λ) defined in (2.10)
Update and store the summary statistics {β̂(b), Ĵ (b)}
Given λb, update the estimator in low-dimensional projection γ̂

(b)
r defined in (2.5)

Update and store the summary statistics M
(b)
1 and M

(b)
2 by (2.8)

Compute β̂
(b)
on,r by (2.7) and σ̂

(b)
r

Output β̂(b)
on,r and its estimated standard error σ̂

(b)
r
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Fig 1. Flowchart of the online debiasing algorithm. When a new data batch Db arrives, it is
sent to the lasso estimation block for updating β̂(b−1) to β̂(b). At the same time, it is also
viewed as a test set for adaptively choosing tuning parameter λb. In the low-dim projection
block, we extract sub-matrices from the updated information matrix Ĵ(b) to compute γ̂

(b)
r (λb)

and the corresponding low-dimensional projection τ̂
(b)
r . Outputs β̂

(b)
r (λb), and τ̂

(b)
r are further

used to compute the debiased lasso estimator β̂
(b)
on,r and its estimated standard error σ̂

(b)
r .

Remark 1. When p is large, it may be challenging to implement the online debi-
asing algorithm since the space complexity to store the aggregated information
matrix Ĵ (b) is O(p2). To reduce memory usage, we can compute the eigenvalue
decomposition (EVD) of Ĵ (b) = QbΛbQ

�
b , where Qb is the p × Nb columns or-

thogonal matrix of the eigenvectors, Λb is the Nb × Nb diagonal matrix whose
diagonal elements are the eigenvalues of Ĵ (b). We only need to store Qb and Λb.
Since rb = rank(Λb) ≤ min{Nb, p}, we can use an incremental EVD approach [5]
to update Qb and Λb. Then the space complexity reduces to O(rbp). The space
complexity can be further reduced by setting a threshold. For example, select
the principal components which explain most of the variations in the predictors.
However, incremental EVD could increase the computational cost since it re-
quires additional O(r2

bp) computational complexity. Indeed, there is a trade-off
between space complexity and computational complexity. How to balance this
trade-off is an important computational issue and deserves careful analysis, but
is beyond the scope of this study.

3. Theoretical properties

In this section, we state our main theoretical results: the oracle inequality of
lasso estimators β̂(b) and γ̂

(b)
r defined in (2.4) and (2.5) respectively, as well as

the asymptotic normality of the online debiased estimator β̂(b)
on,r. Recall that β0

is the underlying true coefficient. Consider a random design matrix X with i.i.d
rows. Let Σ = E[(X(1))�X(1)]/N1, J = E[J (1)(β0)]/N1 and Θ = J−1 be its
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inverse. Then, the ground truth of γ̂(b)
r given in (2.5) is defined as

γ0
r = arg minγ∈R(p−1) E

(
Jr,r − 2Jr,−rγ + γ�J−r,−rγ

)
.

In addition, we let S0 = {r : β0
r �= 0}, s0 = |S0|, Sr = {k �= r : Θk,r �= 0} and

sr = |Sr| for r = 1, . . . , p. The following assumptions are needed to build the
oracle inequality of the lasso estimators β̂(b) and γ̂

(b)
r defined in (2.4) and (2.5).

Assumption 1. Suppose that

(A1) The pairs of random variables {yi,xi}i∈D�
b

are i.i.d.. The covariates are
bounded by some constant K > 0, that is, supi∈D�

b
‖xi‖∞ ≤ K with prob-

ability one.
(A2) supi∈D�

b
|xiβ

0| = O(1) and supi∈D�
b
|(xi)−rγ

0
r | = O(K), where (xi)−r

is the sub-vector of xi with r-th element deleted. In addition,
supi∈D�

b
|1/g′′(xiβ

0)| = O(1).
(A3) For some δ-neighborhood (δ > 0), g′′(·) is Lipschitz with constant lg, that

is,

sup
i∈D�

b

sup
u,v∈{v:|v−xiβ0|≤δ}

|g′′(u) − g′′(v)|
|u− v| ≤ lg.

(A4) The smallest eigenvalue of J is bounded away from zero. In addition,
0 ≤ c1 ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ c2 < ∞ for two absolute constants c1
and c2.

(A1) assumes that the streaming data is homogeneous, and the covariates
follow bounded distributions for some finite K or the covariates are sub-gaussian
random variables with K =

√
log{max(Nb, p)}. (A2) requires the boundness

of |xiβ
0| and |(xi)−rγ

0
r |. Such an assumption is regular for high-dimensional

models [30, 2]. (A3) requires the Lipschitz property of the derivative of the
mean function around the truth value. It can be easily verified that the popular
logistic regression, a special case of generalized linear models, satisfies (A3).
(A4) ensures that the compatibility condition [29] holds.

Theorem 1. Assume Assumption 1 holds. Suppose that the first batch size n1 ≥
cK2s2

0 log p for some constant c and b = o(logNb), and the tuning parameter
λj = C{log(p)/Nj}1/2, j = 1, . . . b for some constant C. If there exists an ε > 0
such that K2s2

0 log(p)N−1+ε
b = o(1), then, for any j = 1, . . . , b, with probability

at least 1 − p−2, the proposed online estimator in (2.4) satisfies

‖β̂(j) − β0‖1 ≤ c
(j)
1 s0λj , ‖X(j)

� (β̂(j) − β0)‖2
2 ≤ c

(j)
2 s0Njλ

2
j .

Remark 2. Theorem 1 provides upper bounds of the estimation error and the
prediction error of the online lasso estimator β̂(j). The constants c

(j)
1 and c

(j)
2 ,

j = 1, . . . , b, possibly depend on the batch step j. Since the lasso estimator β̂(b)

depends on β̂(b−1), the estimation error in the previous step will be carried onto
the updated estimators. As a result, it is inevitable that some constants in the
oracle inequality depend on b; nonetheless, they are well under control as long
as b = o(logNb).
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The next corollary shows the consistency of the proposed online lasso esti-
mator in (2.4).

Corollary 1. Assume those conditions in Theorem 1 hold. Then, the lasso
estimator in (2.4) satisfies ‖β̂(b) − β0‖1 →p 0 as Nb → ∞, where →p means
convergence in probability.

We present the oracle inequality for γ̂
(b)
r in the next theorem.

Theorem 2. Assume Assumption 1 holds. Suppose that the cumulative batch
size satisfies Nj ≥ cc

(j)
1 K2s2

0s
2
r log p, j = 1, . . . , b for some constant c, and the

tuning parameter λj = C{log(p)/Nj}1/2 for some constant C, then, for any
j = 1, . . . , b, with probability at least 1 − p−2, the estimator in low-dimensional
projection defined in (2.5) satisfies ‖γ̂(j)

r − γ0
r‖1 ≤ c3srλj.

Combining the results in Theorem 1 and Theorem 2, we can establish the
asymptotic normality of the online debiased lasso estimator.

Theorem 3. Assume those conditions in Theorem 1 and Theorem 2 hold. If
there exists an ε > 0 such that

s2
0K

3 log(p) log(Nb)N
− 1

2+ε

b = o(1), s2
0s

2
rK

2 log(p)N−1+ε
b = o(1),

then for any fixed r,

τ̂
(b)
r√
Nb

(β̂(b)
on,r − β0

r ) = Wr + Vr,

Wr = 1√
Nb

{γ̃(b)
r }�

b∑
j=1

{X(j)}�
(
g′(X(j)β0) − y(j)

)
, Vr = op(1).

According to Theorem 3, the asymptotic expression of τ̂ (b)
r (β̂(b)

on,r − β0
r )/

√
Nb

is a sum of Wr and Vr, where Wr converges in distribution to a normal random
variable by the martingale central limit theorem and Vr diminishes as Nb goes
to infinity. Note that τ̂

(b)
r = Op(Nb), which implies the convergence rate of

β̂
(b)
on,r − β0

r is at the order of 1/
√
Nb.

Remark 3. Theorem 3 implies that the total data size Nb could be as small as
the logarithm of the dimensionality p, which is a common condition for offline
debiased lasso in the literature [32, 30]. However, due to the lack of access to
the whole dataset, it is increasingly difficult to derive the asymptotic property
of online debiased lasso. One major difficulty arises from the dependence among
β̂(1), . . . , β̂(b). Another difficulty is dealing with the approximation error that
accumulates in the online updating, especially under high-dimensional settings.
In contrast, the classical offline lasso does not have these two problems. Even
for the online debiased lasso in the linear model [14], the above two problems
can be bypassed by making use of the special structure of the least squares in
the linear model.
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4. Simulation studies

4.1. Setup

In this section, we conduct simulation studies to examine the finite-sample per-
formance of the proposed online debiased lasso. We randomly generate a total
of Nb samples arriving in a sequence of b data batches, denoted by {D1, . . . ,Db},
from a logistic regression model. Specifically,

P (y(j)
i = 1 | x(j)

i ) = exp(x(j)
i β0)

1 + exp(x(j)
i β0)

P (y(j)
i = 0 | x(j)

i ) = 1 − P (y(j)
i = 1 | x(j)

i ), i = 1, . . . , nj ; j = 1, . . . , b,

where {x(j)
i }� ∼ N (0,Σ) and β0 ∈ R

p is a p-dimensional sparse parameter
vector with s0 = 10 denoting the number of nonzero components in β0. We set
half of these nonzero coefficients to be 1 (relatively strong signals), and another
half to be 0.01 (weak signals). We consider the following settings: (i) Nb = 624,
b = 12, nj = 52 for j = 1, . . . , 12, p = 600; (ii) Nb = 1,000, b = 10, nj = 100
for j = 1, . . . , 10, p = 1,000; (iii) Nb = 1,000, b = 10, nj = 100 for j = 1, . . . , 10,
p = 2000. In all settings, we choose Σ = 0.1×{0.5|i−j|}i,j=1,...,p and the learning
rate is set to η = 0.005.

The objective is to conduct both estimation and inference along the arrival of
a sequence of data batches. The evaluation criteria include: averaged absolute
bias in estimating β0 (A.bias); averaged estimated standard error (ASE); em-
pirical standard error (ESE); coverage probability (CP) of the 95% confidence
intervals; averaged length of the 95% confidence interval (ACL). These metrics
will be evaluated separately for three groups: (i) β0

r = 0, (ii) β0
r = 0.01 and (iii)

β0
r = 1. Comparison is made among (i) the maximum likelihood estimator ob-

tained by fitting the conventional generalized linear model at the terminal point
where Nb ≥ p, (ii) the offline debiased �1-penalized estimator at the terminal
point which is also the benchmark method (included in p = 600 only because of
the computation burden), and (iii) our proposed online debiased lasso estimator
at several intermediate points from j = 1, . . . , b. Two offline methods included in
comparison are executed with existing R packages hdi [8] and glm, respectively.
The results are reported in Tables 1–3.

4.2. Bias and coverage probability

It can be seen from Tables 1–3 that the estimation bias of the online debiased
lasso (ODL) estimator decreases rapidly as the number of data batches b increas-
ing from 2 to 10. Both the estimated standard errors and the average length of
95% confidence intervals show a similar decreasing trend over time, and almost
coincide with those by the offline benchmark method in Table 1 at the termi-
nal points. Besides that, the coverage probability of ODL always performs well.
For example, in Tables 1–3, the coverage probabilities of ODL are close to 95%
across all updating points j = 2, 4, . . . , 10.
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Table 1

Nb = 624, b = 12, p = 600, s0 = 10, Σ = 0.1 × {0.5|i−j|}i,j=1,...,p. Performance on
statistical inference. “MLE” is the offline estimator obtained by fitting the traditional GLM,

“offline” corresponds to the offline debiased �1-norm penalized estimator, and “ODL”
represents our proposed online debiased lasso estimator.

β0,r MLE offline ODL
data batch index 2 4 6 8 10 12

A.bias
0 1.594 0.018 0.042 0.034 0.031 0.029 0.027 0.025
0.01 1.554 0.016 0.044 0.031 0.026 0.012 0.010 0.010
1 11.85 0.077 0.192 0.168 0.159 0.147 0.137 0.134

ASE
0 2.43 × 106 0.307 0.576 0.416 0.347 0.304 0.274 0.251
0.01 2.45 × 106 0.307 0.577 0.416 0.347 0.304 0.274 0.251
1 2.42 × 106 0.308 0.576 0.416 0.347 0.304 0.275 0.251

ESE
0 27.18 0.300 0.576 0.411 0.341 0.298 0.269 0.246
0.01 27.68 0.296 0.576 0.403 0.330 0.287 0.266 0.240
1 27.49 0.291 0.559 0.395 0.326 0.295 0.257 0.240

CP
0 1.000 0.955 0.947 0.949 0.949 0.949 0.948 0.947
0.01 1.000 0.957 0.949 0.958 0.951 0.958 0.951 0.956
1 1.000 0.951 0.946 0.939 0.929 0.925 0.931 0.926

ACL
0 9.51 × 106 1.202 2.259 1.631 1.361 1.193 1.076 0.982
0.01 9.59 × 106 1.203 2.261 1.632 1.361 1.193 1.076 0.983
1 9.48 × 106 1.206 2.257 1.629 1.361 1.193 1.077 0.983

C.Time (min) 0.06 112.3 6.99

Table 2

Nb = 1,000, b = 10, p = 1,000, s0 = 10, Σ = 0.1 × {0.5|i−j|}i,j=1,...,p. Performance on
statistical inference. “MLE” is the offline estimator obtained by fitting the traditional GLM,

and “ODL” is our proposed online debiased lasso estimator.
β0,r MLE ODL

data batch index 2 4 6 8 10

A.bias
0 99.47 0.032 0.025 0.022 0.019 0.018
0.01 151.69 0.036 0.026 0.026 0.019 0.020
1 100.99 0.113 0.123 0.128 0.127 0.122

ASE
0 7.91 × 106 0.449 0.317 0.259 0.224 0.200
0.01 8.36 × 106 0.450 0.317 0.259 0.224 0.201
1 8.05 × 106 0.449 0.317 0.259 0.224 0.201

ESE
0 1692.27 0.434 0.309 0.252 0.218 0.196
0.01 1611.81 0.435 0.317 0.258 0.225 0.198
1 1774.24 0.413 0.293 0.242 0.214 0.191

CP
0 1.000 0.956 0.953 0.951 0.950 0.948
0.01 1.000 0.955 0.949 0.945 0.949 0.941
1 1.000 0.965 0.963 0.947 0.928 0.917

ACL
0 3.10 × 107 1.761 1.243 1.014 0.879 0.786
0.01 3.28 × 107 1.765 1.244 1.015 0.879 0.786
1 3.15 × 107 1.764 1.244 1.016 0.879 0.786

It is worth mentioning that at the terminal point in Tables 1 and 2 where the
cumulative sample size Nb is equal to or slightly larger than p, we can still fit the
conventional generalized linear model to obtain the MLE. It fails to provide re-
liable coverage probabilities due to severely large biases and estimated standard
errors. In particular, the estimation bias of MLE is around hundreds times that
of the offline or online debiased lasso when p = 600 as shown in Tables 1, and
it further increases to thousands times of the online debiased estimator when
p = 1,000. Furthermore, as clearly indicated by the large empirical standard
errors, MLE under this setting suffers from severe instability. Such an invalid
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Table 3

Nb = 1000, b = 10, p = 2000, s0 = 10, Σ = 0.1 × {0.5|i−j|}i,j=1,...,p. Performance on
statistical inference. “ODL” represents our proposed online debiased lasso estimator.

β0,r ODL
data batch index 2 4 6 8 10

A.bias
0 0.028 0.021 0.018 0.016 0.015
0.01 0.019 0.013 0.014 0.011 0.009
1 0.091 0.102 0.104 0.102 0.110

ASE
0 0.449 0.317 0.259 0.224 0.200
0.01 0.449 0.317 0.259 0.224 0.200
1 0.449 0.317 0.258 0.224 0.200

ESE
0 0.442 0.313 0.255 0.221 0.197
0.01 0.458 0.318 0.258 0.218 0.196
1 0.419 0.305 0.245 0.218 0.195

CP
0 0.953 0.951 0.951 0.950 0.950
0.01 0.947 0.951 0.947 0.949 0.958
1 0.964 0.946 0.935 0.934 0.920

ACL
0 1.760 1.242 1.014 0.878 0.785
0.01 1.761 1.241 1.014 0.878 0.785
1 1.763 1.243 1.015 0.878 0.785

estimation and inference result by MLE further demonstrates the advantage of
our proposed online debiased method under the high-dimensional sparse logistic
regression setting with streaming datasets.

4.3. Computational efficiency

We make a computation time comparison including data loading time and algo-
rithm execution time of different methods in Table 1 only, as the offline debiased
lasso implemented with hdi becomes computationally prohibitive when p in-
creases to 1000. Moreover, while achieving comparable statistical performance,
the computational advantage of our proposed online debiased lasso is clear when
p = 600, as it is almost 16 times faster than its offline counterpart.

5. Real data analysis

New technologies have made available vast quantities of digital text, record-
ing an ever-increasing share of human interactions, communication, and cul-
ture [1, 20]. The information encoded in text serves as a rich complement to
the more structured traditional data in research. For example, text from fi-
nancial news, social media, and company filings can be used to predict asset
price movements and study the causal impact of new information; text from
advertisements and product reviews may also be utilized to study the drivers
of consumer decision making [13]. One of the most prominent features of text
data is that it is high-dimensional in nature due to the large volume of the word
dictionary. Existing works mostly focused on point estimation without much
consideration of statistical inference such as interval estimation [17]. Thus, a
computationally-efficient online interval estimation method in high-dimensional
setting is desired. Our proposed method can fill in this gap.
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Fig 2. Trace plot of the point estimate and 95% confidence bands of regression coefficients
corresponding to phrases “additional”, “mortgage loans” and “return”, respectively.

In this section, we analyze the 10-K reports dataset collected from year 2002
to year 2006 [17]. This dataset includes n ≈ 16,800 annual financial reports from
all publicly-traded corporations and the corresponding stock future volatilities.
Our goal of this analysis is to investigate the influence of annual financial reports
on stock volatility. In particular, we will fit a logistic regression model where
the response variable y encodes the increase (y = 1) or the decrease (y = 0) in
stock utility, and the high-dimensional covariate vector x is the top-3000 phrases
(including unigrams and bigrams) with highest frequencies, i.e. p = 3,000.

We apply our proposed online debiased method to construct confidence inter-
vals along with sequentially collected data points. We obtain an updated point
estimate of the regression coefficient and its 95% confidence interval every six
months, and the trajectories are plotted in Figure 2. In this analysis, we look
into the associations between the frequencies of some phrases and the odds of
increased stock utility. Particularly, we focus on “additional”, “mortgage loan”
and “return”. As shown in Figure 2, all confidence intervals cover zero at the be-
ginning, i.e. in June 2002. Later on, as data accumulates, we find that “mortgage
loan” tends to show a positive association to the odds of increased stock utility
while “return” shows a negative association. Furthermore, the estimated regres-
sion coefficient of “additional” stays close to zero and its confidence interval
always covers zero.

These results are intuitively reasonable. First, “mortgage loan” stands for a
secured loan that allows one to take funds by providing an immovable asset
such as a house or commercial property. It typically happens when company
faces a cash flow shortfall. Consequently, it will undermine investors’ confidence
and increase the volatility of the stock price. In contrast, “return” indicates a
healthy development of the company, which strengthens investors’ confidence
and reduces the volatility. Moreover, our interval estimation can help identify
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insignificant coefficients. For example, the word “additional”, which is found to
be positively associated with the volatility in [17], turns out to be statistically
insignificant.

6. Discussion

In this paper, we propose an online debiased lasso method for statistical infer-
ence in high-dimensional generalized linear models. The method is applicable
to streaming data, that is, only the historical summary statistics, not the raw
historical data, are needed in updating the estimate at the current stage. Under
regularity conditions similar to those in the offline setting and mild conditions
on the batch sizes, we prove the online debiased lasso (with an online correction
term) is asymptotically normal. The numerical studies further demonstrate the
effectiveness of our algorithm and support the theoretical results.

There are several open questions in the area of online inference. First, our
method are developed for homogeneous data, where the streaming data are
assumed to be i.i.d. sampled. While there are some existing works that address
dependence and time-varying effects in low-dimensional settings [19], it will be
interesting to explore how they can be extended to high-dimensional settings.
Second, the loss function we consider in this paper is the negative log-likelihood
function. It is unclear whether other loss functions, including non-smooth robust
loss functions such as the Huber’s loss [15], could be used for online inference.
Third, we did not address the issue of the online variable selection. The major
difficulty in this problem is how to recover the significant variables which may be
dropped at the early stages of the stream. We hope to address these interesting
questions in the future.

Appendix A: Proofs of theoretical results

This section provides detailed proofs for the theorems described in the main
text.

A.1. Proof of Theorem 1

Proof of Theorem 1. For the prior data batch D1, we have β̂(1) = β̄(1) where
β̄(1) is the offline lasso estimator. Since the oracle inequality of β̄(1) is well-
established in Section 6.7 of [4], Theorem 1 holds when b = 1. Now we prove the
oracle inequality of β̂(b) for an arbitrary b ≥ 2 by the mathematical induction.

Suppose that β̂(b−1) satisfies

‖β̂(b−1) − β0‖1 ≤ c
(b−1)
1 s0λb−1, ‖X(b−1)

� (β̂(b−1) − β0)‖2
2 ≤ c

(b−1)
2 s0Njλ

2
b−1

with constants c(b−1)
1 and c

(b−1)
2 . We claim that ‖β̂(b) −β0‖1 ≤ c

(b)
1 s0λb. Other-

wise, we consider the following linear combination,

β̃(b) = tβ̂(b) + (1 − t)β0, where t = c
(b)
1 s0λb

c
(b)
1 s0λb + ‖β̂(b) − β0‖1

. (A.1)
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Then ‖β̃(b) − β0‖1 ≤ c
(b)
1 s0λb. Since ‖β̃(b) − β0‖1 ≤ c

(b)
1 s0λb/2 if and only if

‖β̂(b) − β0‖1 ≤ c
(b)
1 s0λb, it suffices to show ‖β̃(b) − β0‖1 ≤ c

(b)
1 s0λb/2.

Let L(β;Dj) =
∑

i∈Dj
{g(xiβ) − yixiβ}, j = 1, . . . , b. Due to the convexity

of the objective function, we have

1
2Nb

{
L(β̃(b);Db) + 1

2(β̃(b) − β̂(b−1))�Ĵ (b−1)(β̃(b) − β̂(b−1))
}

+ λb‖β̃(b)‖1

≤ 1
2Nb

{
L(β0;Db) + 1

2(β0 − β̂(b−1))�Ĵ (b−1)(β0 − β̂(b−1))
}

+ λb‖β0‖1,

(A.2)

where Ĵ (b−1) =
∑b−1

j=1 J
(j)(β̂(j)). Recall that D�

b−1 = {D1, . . . ,Db−1}. A Taylor’s
expansion gives that

L(β̃(b);D�
b−1) − L(β0;D�

b−1)

= {Ū (b−1)(β0)}�(β̃(b) − β0) + 1
2(β̃(b) − β0)�

{
Ĵ (b−1)(ξ)

}
(β̃(b) − β0),

where Ĵ (b−1)(ξ) =
∑b−1

j=1 J
(j)(ξ) and ξ = t2β

0+(1−t2)β̃(b) for some 0 < t2 < 1.
Then

1
2(β̃(b)−β̂(b−1))�Ĵ (b−1)(β̃(b)−β̂(b−1))− 1

2(β0−β̂(b−1))�Ĵ (b−1)(β0−β̂(b−1))

= 1
2(β̃(b) − β0)�Ĵ (b−1)(β̃(b) − β0) − (β̃(b) − β0)�Ĵ (b−1)(β̂(b−1) − β0)

= L(β̃(b);D�
b−1) − L(β0;D�

b−1)

+ 1
2

b−1∑
j=1

(β̃(b) − β0)�
{
J (j)(β̂(j)) − J (j)(ξ)

}
(β̃(b) − β0)

−
b−1∑
j=1

(β̃(b) − β0)�
{
J (j)(β̂(j))

}
(β̂(b−1) − β0) − {Ū (b−1)(β0)}�(β̃(b) − β0)

:= L(β̃(b);D�
b−1) − L(β0;D�

b−1) + Δ(b)
1 − Δ(b)

2 − Δ(b)
3 .

Substituting the above equation into (A.2), we have

1
2Nb

L(β̃(b);D�
b ) + λb‖β̃(b)‖1 + 1

2Nb
(Δ(b)

1 − Δ(b)
2 − Δ(b)

3 )

≤ 1
2Nb

L(β0;D�
b ) + λb‖β0‖1. (A.3)

The remaining part is the same as the proof of Theorem 6.4 in van de Geer [29].
Define

E(β) := 1
2Nb

E
{
L(β;D�

b ) − L(β0;D�
b )
}
,

v(β;D�
b ) := L(β;D�

b ) − E {L(β;D�
b )} , β ∈ R

p,
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which are the excess risk and the empirical process respectively. Note that E(β)
does not depend on D�

b since the data are i.i.d. samples. Then, (A.3) could be
further written as

E(β̃(b)) + λb‖β̃(b)‖1

≤− 1
2Nb

{
v(β̃(b);D�

b ) − v(β0;D�
b )
}

+ λb‖β0‖1 + 1
2Nb

(Δ(b)
1 − Δ(b)

2 − Δ(b)
3 )

= − 1
2Nb

Δ(b)
4 + λb‖β0‖1 + 1

2Nb
(Δ(b)

1 − Δ(b)
2 − Δ(b)

3 ).

Recall that X
(b−1)
� = ((X(1))�, . . . , (X(b−1))�)� ∈ R

Nb−1×p. The next lemma
provides the upper bound of |Δ(b)

i |, i = 1, 2, 3, 4, whose proof is given at the end
of Appendix.

Lemma 1. Under the conditions of Theorem 1, with probability at least 1−p−3,

|Δ(b)
1 | ≤ 2Klgc

(1)
1 s0λ1‖X(b−1)

� (β̃(b) − β0)‖2
2,

|Δ(b)
2 | ≤ K2‖X(b−1)

� (β̃(b) − β0)‖2‖X(b−1)
� (β̂(b−1) − β0)‖2,

|Δ(b)
3 | ≤ λb−1Nb−1‖β̃(b) − β0‖1/8, |Δ(b)

4 | ≤ λbNb‖β̃(b) − β0‖1/8,

where lg is Lipschitz constant defined in Assumption 1, K = supi∈D�
b
‖xi‖∞ and

K2 = supi∈D�
b
|g′′(xiβ)|.

The upper bound of |Δ1| could be absorbed in the upper bound of |Δ2|.
According to Lemma 1,

Δ(b)
1 − Δ(b)

2 − Δ(b)
3 − Δ(b)

4

≤ 2K2‖X(b−1)
� (β̃(b) − β0)‖2‖X(b−1)

� (β̂(b−1) − β0)‖2 + 1
4λbNb‖β̃(b) − β0‖1

≤ 2K2(Nb−1c
(b−1)
2 s0)1/2λb−1‖X(b)

� (β̃(b) − β0)‖2 + 1
4c

(b)
1 Nbs0λ

2
b .

Consequently,

E(β̃(b)) + λb‖β̃(b)‖1 − λb‖β0‖1

≤ 1
2Nb

{
2K2(Nb−1c

(b−1)
2 s0)1/2λb−1‖X(b)

� (β̃(b) − β0)‖2 + 1
4c

(b)
1 Nbs0λ

2
b

}
=
{
K2

(
c
(b−1)
2 s0

Nb

)1/2
‖X(b)

� (β̃(b) − β0)‖2 + 1
8c

(b)
1 s0λb

}
λb = Δ(b)λb. (A.4)

Recall that S0 = {j : β0
j �= 0}. For β ∈ R

p, define βS0 = (βj,S0)
p
j=1 where

βj,S0 = βjI{j∈S0}. Then, β = βS0 + βSc
0 . It follows from (A.4) that

E(β̃(b)) + λb‖β̃(b)
Sc

0
‖1 ≤ λb‖β0‖1 − λb‖β̃(b)

S0
‖1 + Δ(b)λb ≤ λb‖β0 − β̃

(b)
S0

‖1 + Δ(b)λb.

Here, some discussions on the value of ‖β0 − β̃
(b)
S0

‖1 are needed.
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Case I. Suppose that ‖β0 − β̃
(b)
S0

‖1 ≥ Δ(b)/2. Then,

E(β̃(b)) + λb‖β̃(b)
Sc

0
‖1 ≤ 3λb‖β0 − β̃

(b)
S0

‖1,

impling ‖β̃(b)
Sc

0
‖1 ≤ 3‖β0−β̃

(b)
S0

‖1. Then, we can adopt the empirical compatibility
condition, that is,

‖β0 − β̃
(b)
S0

‖2
1 ≤ s0

φ2
0Nb

‖X(b)
� (β0 − β̃(b))‖2

2,

where φ0 > 0 is the compatibility constant. Thus,

E(β̃(b)) + λb‖β̃(b)
Sc

0
‖1 + λb‖β0 − β̃

(b)
S0

‖1

≤ 2λb

φ0

(
s0

Nb

)1/2

‖X(b)
� (β0 − β̃(b))‖2 + Δ(b)λb

=
(

2
φ0

+ K2

√
c
(b−1)
2

)
λb

(
s0

Nb

)1/2

‖X(b)
� (β0 − β̃(b))‖2 + 1

8c
(b)
1 s0λ

2
b

= Cλb

(
s0

Nb

)1/2

‖X(b)
� (β0 − β̃(b))‖2 + 1

8c
(b)
1 s0λ

2
b .

Let k2 = 1/ supi∈D�
b
|4/g′′(xiβ)|. Based on Lemma 1, we have

k2

Nb
‖X(b)

� (β0 − β̃(b))‖2
2 ≤ E(β̃(b)) + 1

2Nb
Δ(b)

4 ≤ E(β̃(b)) + 1
16c

(b)
1 s0λ

2
b ,

which is also known as the margin condition [29]. Next, we apply the arithmetic
mean-geometric mean inequality and obtain

Cλb

(
s0

Nb

)1/2

‖X(b)
� (β0 − β̃(b))‖2 ≤ C2

2k2
s0λ

2
b + E(β̃(b))

2 + 1
32c

(b)
1 s0λ

2
b . (A.5)

Then, it follows that

E(β̃(b))
2 + λb‖β0 − β̃(b)‖1 ≤

(
C2

2k2
+ 5

32c
(b)
1

)
s0λ

2
b . (A.6)

On the one hand, since E(β̃(b)) > 0,

‖β0 − β̃(b)‖1 ≤
(
C2

2k2
+ 5

32c
(b)
1

)
s0λb.

With suitable choice of c(b−1)
2 ,

C2

2k2
+ 5

32c
(b)
1 = 1

2k2

(
2
φ0

+ K2

√
c
(b−1)
2

)2

+ 5
32c

(b)
1 ≤ 13

32c
(b)
1 ,
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we have
‖β0 − β̃(b)‖1 ≤ 1

2c
(b)
1 s0λb.

Here we require that K2

√
c
(1)
2 ≥ 2/φ0, and 8K2

2c
(b−1)
2 /k2 = c

(b)
1 . On the other

hand, combining (A.5) and (A.6), we obtain

‖X(b)
� (β0 − β̃(b))‖2 ≤ 5C

2k2
(s0Nb)1/2λb.

Again, since C ≤ 2K2

√
c
(b−1)
2 , we obtain

‖X(b)
� (β0 − β̃(b))‖2

2 ≤
(

5K2

k2

)2

c
(b−1)
2 s0λ

2
bNb ≤ c

(b)
2 s0λ

2
bNb. (A.7)

Case II. Suppose that ‖β0 − β̃
(b)
S0

‖1 < Δ(b)/2. Then,

E(β̃(b)) + λb‖β̃(b)
Sc

0
‖1 + λb‖β0 − β̃

(b)
S0

‖1 ≤ 2Δ(b)λb

= 2K2λb

(
c
(b−1)
2 s0

Nb

)1/2

‖X(b)
� (β0 − β̃(b))‖2 + 1

4c
(b)
1 s0λ

2
b .

Then, by the margin condition, it is straightforward to show that

‖β0− β̃(b)‖1≤
1
2c

(b)
1 s0λb, ‖X(b)

� (β0− β̃(b))‖2
2≤

36K2
2

k2
2

c
(b−1)
2 s0λ

2
bNb=c

(b)
2 s0λ

2
bNb.

(A.8)
In summary, we obtain ‖β0 − β̃(b)‖1 ≤ c

(b)
1 s0λb/2 in both cases. According

to (A.1), we have shown that ‖β0 − β̂(b)‖1 ≤ c
(b)
1 s0λb. The remaining step is

to repeat the above arguments and obtain the upper bound of the estimation
error in (A.7) or (A.8). It is worth pointing out that c

(b)
1 = 8K2

2c
(b−1)
2 /k2 and

c
(b)
2 = 36K2

2c
(b−1)
2 /k2

2, where K2 and k2 do not depend on b. The proof is
completed by taking a union bound on the events considered in Lemma 1.

A.2. Proof of Theorem 2

Before proving Theorem 2, we state Lemma 3 in [14] to compute the cumulative
error.

Lemma 2 (Lemma 3 in [14]). Let nj and Nj be the batch size and the cumulative
batch size respectively when the j-th data arrives, j = 1, . . . , b. Then,

b∑
j=1

nj

Nj
≤ 1 + log Nb

n1
, (A.9)

b∑
j=1

nj√
Nj

≤ 2
√

Nb. (A.10)
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Proof of Theorem 2. Recall that

γ̂(j)
r = arg min

γ∈R(p−1)

{
1

2Nj

(
Ĵ (j)
r,r − 2Ĵ (j)

r,−rγ + γ�Ĵ
(j)
−r,−rγ

)
+ λj‖γ‖1

}
is a standard lasso estimator. The proof follows the standard argument as long
as estimated information matrix Ĵ (j)/Nj satisfies the compatibility condition.
Therefore, it suffices to demonstrate the compatibility condition holds. Recall
that Ĵ (j)/Nj =

∑j
i=1 J

(i)(β̂(i))/Nj . Then we have

Ĵ (j)/Nj − J0 = 1
Nj

j∑
i=1

{
J (i)(β̂(i)) − E[J (i)(β0)]

}
= 1

Nj

j∑
i=1

{
J (i)(β̂(i)) − J (i)(β0)

}
+ 1

Nj

j∑
i=1

[
J (i)(β0) − E{J (i)(β0)}

]
.

According to the error bound of β̂(i) provided in Theorem 1 and (A.10), we
obtain ∥∥∥∥∥ 1

Nj

j∑
i=1

{
J (i)(β̂(i)) − J (i)(β0)

}∥∥∥∥∥
∞

≤ K2

Nj

j∑
i=1

ni‖β̂(i) − β0‖1

= Op

(
K2c

(j)
1 s0

(
log(p)
Nj

)1/2
)
,

where K is defined in (A1) of Assumption 1. Meanwhile, based on Hoeffding’s
inequality, it follows∥∥∥∥∥ 1

Nj

j∑
i=1

[
J (i)(β0) − E{J (i)(β0)}

]∥∥∥∥∥
∞

= Op

((
log(p)
Nj

)1/2
)
.

In summary,

∥∥∥Ĵ (j)/Nj − J0
∥∥∥
∞

= Op

(
K2c

(j)
1 s0

(
log(p)
Nj

)1/2
)
.

Consequently, the compatibility condition holds by Corollary 6.8 in [4].

A.3. Proof of Theorem 3

Proof of Theorem 3. We first deal with the debiased term. Recall that γ̃(b)
r ∈ R

p

is the extension of γ̂(b)
r ∈ R

p−1. Then,

{γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
y(j) − g′(X(j)β̂(j))

}
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= {γ̃(b)
r }�

b∑
j=1

{X(j)}�
[{

y(j) − g′(X(j)β0)
}

+ {g′(X(j)β0) − g′(X(j)β̂(j))}
]
.

For 1 ≤ k ≤ n, we let X
(j)
k ∈ R

1×p denote k-th row in X(j), namely the
covariates of k-th data in j-th batch. According to the mean value theorem,

g′(X(j)
k β̂(j)) = g′(X(j)

k β0) − g′′(η(j)
k )X(j)

k (β0 − β̂(j)),

where η
(j)
k ∈ [X(j)

k β0,X
(j)
k β̂(j)]. Let η(j) = (η(j)

1 , . . . , η
(j)
nj )� and Λ(j) ∈ R

nj×nj

is diagonal matrix with the diagonal element {g′′(X(j)
k β̂(j)) − g′′(η(j)

k )}nj

k=1. As
a result,

{γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
y(j) − g′(X(j)β̂(j))

}

= {γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
y(j) − g′(X(j)β0)

}

+ {γ̃(b)
r }�

b∑
j=1

J (j)(β̂(j))(β0 − β̂(j)) − Π1,

where Π1 = {γ̃(b)
r }�

∑b
j=1{X(j)}�Λ(j)X(j)(β0 − β̂(j)). Now, we focus on the

online debiased lasso estimator. According to the above results,

τ̂ (b)
r (β̂(b)

on,r − β0
r )

= {γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
g′(X(j)β0) − y(j)

}
−{γ̃(b)

r }�
b∑

j=1
J (j)(β̂(j))(β0−β̂(j))

+ Π1 − {γ̃(b)
r }�

b∑
j=1

J (j)(β̂(j))(β̂(j) − β̂(b)) + τ̂ (b)
r (β̂(b)

r − β0
r )

= {γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
g′(X(j)β0) − y(j)

}
+ Π1

+ {γ̃(b)
r }�

b∑
j=1

J (j)(β̂(j))(β̂(b) − β0) + τ̂ (b)
r (β̂(b)

r − β0
r )

= {γ̃(b)
r }�

b∑
j=1

{X(j)}�
{
g′(X(j)β0) − y(j)

}
+ Π1 + Π2,

where

Π2 =
b∑

j=1
{γ̃(b)

r }�J (j)(β̂(j))(β̂(b) − β0) −
b∑

j=1
{γ̃(b)

r }�J (j)
r (β̂(j))(β̂(b)

r − β0
r )
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Therefore, the remaining part is to show that |Πi| = op(
√
Nb), i = 1, 2.

First of all, according to the Lipschitz condition of g′′(·),∣∣∣g′′(η(j)
k )X(j)

k (β0 − β̂(j)) − g′′(X(j)
k β̂(j))X(j)

k (β0 − β̂(j))
∣∣∣ ≤ lg

{
X

(j)
k (β0 − β̂(j))

}2
.

Then,∥∥∥Λ(j)X(j)(β0 − β̂(j))
∥∥∥

1
≤ lg

∥∥∥X(j)(β0 − β̂(j))
∥∥∥2

2
≤ K2lg(c(j)1 s0λj)2nj ,

where the last inequality follows from Theorem 1 and the bounded assumption
of X. Meanwhile, the boundedness of ‖X(j)γ̃

(b)
r ‖∞ (bounded by K) could be

shown by (A2) in Assumption 1 and Theorem 2. Therefore, we obtain an upper
bound for |Π1|:

|Π1| ≤
b∑

j=1
‖X(j)γ̃(b)

r ‖∞
∥∥∥Λ(j)X(j)(β0 − β̂(j))

∥∥∥
1

≤
b∑

j=1
K3lg(c(j)1 s0λj)2nj = Op

(
c
(b)
1 s2

0K
3 log(p) log(Nb)

)
,

where the last equation is from (A.9) in Lemma 2.
Next, we apply the Karush-Kuhn-Tucker (KKT) conditions. Let er ∈ R

p

denote the zero-vector except that the r-th element is one. Write

|Π2| =
∣∣∣({γ̃(b)

r }�Ĵ (b) − {γ̃(b)
r }�Ĵ (b)

r e�r

)
(β̂(b) − β0)

∣∣∣
≤
∥∥∥{γ̃(b)

r }�Ĵ (b) − {γ̃(b)
r }�Ĵ (b)

r e�r

∥∥∥
∞

∥∥∥β̂(b) − β0
∥∥∥

1

≤ Nbλb × c
(b)
1 s0λb = c

(b)
1 s0Nbλ

2
b = Op

(
c
(b)
1 s0 log(p)

)
.

By the conditions in Theorem 3, we conclude |Πi| = op(
√
Nb), i = 1, 2. As a

result,

τ̂ (b)
r (β̂(b)

on,r − β0
r ) = {γ̃(b)

r }�
b∑

j=1
{X(j)}�

{
g′(X(j)β0) − y(j)

}
+ op(

√
Nb).

We refer the two terms on the right-hand side as Wr and Vr in Theorem 3.

A.4. Proof of Lemma 1

For the sake of completeness, we provide the proof of Lemma 1.

Proof of Lemma 1. We start from |Δ(b)
1 |. Recall that

Δ(b)
1 = 1

2

b−1∑
j=1

(β̃(b) − β0)�
{
J (j)(β̂(j)) − J (j)(ξ)

}
(β̃(b) − β0)
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Let v(j) = X(j)(β̃(b) − β0), w(j) = g′′(X(j)β̂(j)) − g′′(X(j)ξ) and diag(w(j))
denote the diagonal matrix with diagonal element w(j). Then,

Δ(b)
1 = 1

2

b−1∑
j=1

(v(j))�diag(w(j))v(j) = 1
2v

�diag(w)v,

where v = ((v(1))�, . . . , (v(b−1))�)� and w = ((w(1))�, . . . , (w(b−1))�)�. As a
result,

|Δ(b)
1 | ≤ 1

2‖v‖
2
2‖diag(w)‖2 = 1

2‖X
(b−1)
� (β̃(b) − β0)‖2

2‖w‖∞.

It remains to find the upper bound of ‖w‖∞, that is,

‖w‖∞ = max
1≤j≤b−1

‖w(j)‖∞ = max
1≤j≤b−1

‖g′′(X(j)β̂(j)) − g′′(X(j)ξ)‖∞

≤ lg max
1≤j≤b−1

‖X(j)(β̂(j) − ξ)‖∞ ≤ 3Klg max
1≤j≤b−1

c
(j)
1 s0λj

For ease of understanding, we could assume that c(1)1 s0λ1 = max1≤j≤b−1 c
(j)
1 s0λj

since the first data batch containing the least information may lead to the largest
estimation error. Besides that, this assumption will not affect the outcome. The
upper bound of |Δ1| could always be absorbed in the upper bound of |Δ2| due
to b = o(logNb) and K2s2

0 log(p)N−1+ε
b = o(1).

Regarding Δ2, the proof is structurally similar and is omitted. Recall that
|Δ(b)

3 | = {Ū (b−1)(β0)}�(β̃(b) −β0) and Ū (b−1)(β0) could be written as the sum
of i.i.d. random variables, that is, Ū (b−1)(β0) =

∑
i∈D�

b−1
u(yi;xi,β

0). Since
E[Ū (b−1)(β0)] = 0 and ‖xi‖∞ ≤ K, by Hoeffding’s inequality, with probability
at least 1 − p−3,

‖Ū (b−1)(β0)‖∞ ≤ λb−1Nb−1/8.

The result of |Δ(b)
4 | can be shown in a straightforward fashion by Theorem 14.5

in [4].
The proof of Lemma 1 is complete.
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