Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109627
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorCen, S-
dc.creatorJin, B-
dc.creatorLiu, Y-
dc.creatorZhou, Z-
dc.date.accessioned2024-11-08T06:10:37Z-
dc.date.available2024-11-08T06:10:37Z-
dc.identifier.issn0266-5611-
dc.identifier.urihttp://hdl.handle.net/10397/109627-
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.rights© 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UKen_US
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
dc.rightsThe following publication Cen, S., Jin, B., Liu, Y., & Zhou, Z. (2023). Recovery of multiple parameters in subdiffusion from one lateral boundary measurement. Inverse Problems, 39(10), 104001 is available at https://doi.org/10.1088/1361-6420/acef50.en_US
dc.subjectDiscontinuous diffusivityen_US
dc.subjectLateral boundary measurementen_US
dc.subjectLevel set methoden_US
dc.subjectSubdiffusionen_US
dc.subjectUnknown mediumen_US
dc.titleRecovery of multiple parameters in subdiffusion from one lateral boundary measurementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume39-
dc.identifier.issue10-
dc.identifier.doi10.1088/1361-6420/acef50-
dcterms.abstractThis work is concerned with numerically recovering multiple parameters simultaneously in the subdiffusion model from one single lateral measurement on a part of the boundary, while in an incompletely known medium. We prove that the boundary measurement corresponding to a fairly general boundary excitation uniquely determines the order of the fractional derivative and the polygonal support of the diffusion coefficient, without knowing either the initial condition or the source. The uniqueness analysis further inspires the development of a robust numerical algorithm for recovering the fractional order and diffusion coefficient. The proposed algorithm combines small-time asymptotic expansion, analytic continuation of the solution and the level set method. We present extensive numerical experiments to illustrate the feasibility of the simultaneous recovery. In addition, we discuss the uniqueness of recovering general diffusion and potential coefficients from one single partial boundary measurement, when the boundary excitation is more specialized.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInverse problems, Oct. 2023, v. 39, no. 10, 104001-
dcterms.isPartOfInverse problems-
dcterms.issued2023-10-
dc.identifier.scopus2-s2.0-85169915747-
dc.identifier.eissn1361-6420-
dc.identifier.artn104001-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextUK EPSRC; Chinese University of Hong Kong; JSPS; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cen_2023_Inverse_Problems_39_104001.pdf1.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

4
Citations as of Nov 17, 2024

Downloads

8
Citations as of Nov 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.