
Inverse Problems
     

PAPER • OPEN ACCESS

Recovery of multiple parameters in subdiffusion
from one lateral boundary measurement
To cite this article: Siyu Cen et al 2023 Inverse Problems 39 104001

 

View the article online for updates and enhancements.

You may also like
Flashing subdiffusive ratchets in
viscoelastic media
Vasyl Kharchenko and Igor Goychuk

-

A reaction–subdiffusion model of
fluorescence recovery after
photobleaching (FRAP)
S B Yuste, E Abad and K Lindenberg

-

Subdiffusive random walk in a membrane
system: the generalized method of images
approach
Tadeusz Kosztoowicz

-

This content was downloaded from IP address 158.132.161.180 on 14/10/2024 at 07:32

https://doi.org/10.1088/1361-6420/acef50
/article/10.1088/1367-2630/14/4/043042
/article/10.1088/1367-2630/14/4/043042
/article/10.1088/1742-5468/2014/11/P11014
/article/10.1088/1742-5468/2014/11/P11014
/article/10.1088/1742-5468/2014/11/P11014
/article/10.1088/1742-5468/2015/10/P10021
/article/10.1088/1742-5468/2015/10/P10021
/article/10.1088/1742-5468/2015/10/P10021


Inverse Problems

Inverse Problems 39 (2023) 104001 (31pp) https://doi.org/10.1088/1361-6420/acef50

Recovery of multiple parameters in
subdiffusion from one lateral boundary
measurement

Siyu Cen1, Bangti Jin2,∗, Yikan Liu3 and Zhi Zhou1

1 Department of Applied Mathematics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong Special Administrative Region of China, People’s Republic of
China
2 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New
Territories, Hong Kong Special Administrative Region of China, People’s Republic
of China
3 Research Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Sapporo 060-0812,
Japan

E-mail: bangti.jin@gmail.com and b.jin@cuhk.edu.hk

Received 3 February 2023; revised 6 July 2023
Accepted for publication 10 August 2023
Published 29 August 2023

Abstract
This work is concerned with numerically recovering multiple parameters sim-
ultaneously in the subdiffusion model from one single lateral measurement on
a part of the boundary, while in an incompletely known medium. We prove
that the boundary measurement corresponding to a fairly general boundary
excitation uniquely determines the order of the fractional derivative and the
polygonal support of the diffusion coefficient, without knowing either the
initial condition or the source. The uniqueness analysis further inspires the
development of a robust numerical algorithm for recovering the fractional
order and diffusion coefficient. The proposed algorithm combines small-time
asymptotic expansion, analytic continuation of the solution and the level set
method. We present extensive numerical experiments to illustrate the feasib-
ility of the simultaneous recovery. In addition, we discuss the uniqueness of
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recovering general diffusion and potential coefficients from one single partial
boundary measurement, when the boundary excitation is more specialized.

Keywords: subdiffusion, lateral boundary measurement,
discontinuous diffusivity, unknown medium, level set method

(Some figures may appear in colour only in the online journal)

1. Introduction

This work is concerned with an inverse problem of simultaneously recovering multiple para-
meters in a subdiffusion model from one single lateral boundary measurement in a partly
unknown medium. Let Ω⊂ Rd (d= 2,3) be an open bounded domain with a Lipschitz and
piecewise C1,1 boundary and T > 0 be a fixed final time. Consider the following subdiffusion
problem for the function u:

∂αt u+Au= f in Ω× (0,T],

a∂νu= g on ∂Ω× (0,T],

u(0) = u0 in Ω,

(1.1)

where u0 ∈ L2(Ω) and (time-independent) f ∈ L2(Ω) are unknown initial and source data, and
ν denotes the unit outward normal vector to the boundary ∂Ω. The elliptic operatorA is defined
by

Au(x) :=−∇ · (a(x)∇u(x)), x ∈ Ω.

Without loss of generality, the diffusion coefficient a is assumed to be piecewise constant:

a(x) = 1+µχD(x), (1.2)

where µ >−1 is a nonzero unknown constant, D is an unknown convex polyhedron in Ω
satisfying diam(D)< dist(D,∂Ω) and χD denotes the characteristic function of D. In the
model (1.1), ∂αt u denotes the Djrbashian–Caputo fractional derivative in time t of order
α ∈ (0,1) defined by ([32, p 92] or [20, section 2.3])

∂αt u(t) : =
1

Γ(1−α)

ˆ t

0
(t− s)−αu′(s)ds.

The model (1.1) has attracted a lot of recent attention, due to its excellent capability to
describe anomalous diffusion phenomena observed in many engineering and physical applic-
ations. The list of successful applications is long and still fast growing, e.g. ion transport in
column experiments [15], protein diffusion within cells [14] and contaminant transport in
underground water [33]. See the reviews [39, 40] for the derivation of relevant mathemat-
ical models and diverse applications. The model (1.1) differs considerably from the normal
diffusion model due to the presence of the nonlocal operator ∂αt u: it has limited smoothing
property in space and slow asymptotic decay at large time [20, 34].

In this paper, we study mathematical and numerical aspects of an inverse problem of recov-
ering the diffusion coefficient a and fractional order α from a single lateral boundary measure-
ment of the solution, without the knowledge of the initial data u0 and source f. The Neumann
data g is taken to be separable:

g(x, t) = ψ(t)η(x), (1.3)
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where 0 ̸≡ η ∈ H 1
2 (∂Ω) satisfies the compatibility condition

´
∂Ω
ηdS= 0 andψ ∈ C1(R+) sat-

isfies

ψ(t) =

{
0, t< T0,

1, t> T1,
(1.4)

with 0< T0 < T1 < T. The measurement data h(x, t) = u(x, t) is taken on a part of the bound-
ary Γ0 ⊂ ∂Ω. Note that the inverse problem involves missing data (u0 and f ), whereas the
available data is only on a partial boundary. Thus, it is both mathematically and numerically
very challenging, due to not only the severe ill-posed nature and high degree of nonlinearity
but also the unknown forward map from the parameters a and α to the data h(x, t).

The mathematical study on inverse problems for time-fractional models is of relatively
recent origin, starting from the pioneering work [8] (see [24, 36, 37] for overviews) and there
are several existing works on recovering a space-dependent potential or diffusion coefficient
from lateral Cauchy data [25, 28, 30, 44, 45, 50]. Rundell and Yamamoto [44] showed that the
lateral Cauchy data can uniquely determine the spectral data when u0 ≡ f≡ 0, and proved the
unique determination of the potential using Gel’fand–Levitan theory. They also numerically
studied the singular value spectrum of the linearized forward map, showing the severe ill-
posed nature of the problem. Later, they [45] relaxed the regularity condition on the boundary
excitation g(t) in a suitable Sobolev space. Recently, Jing and Yamamoto [28] proved the iden-
tifiability of multiple parameters (including order, spatially dependent potential, initial value
and Robin coefficients in the boundary condition) in a time-fractional subdiffusion model with
a zero boundary condition and source, excited by a nontrivial initial condition from the lateral
Cauchy data at both end points; see also [27]. Jin and Zhou [25] studied the unique recovery
of the potential, fractional order and either initial data or source from the lateral Cauchy data,
when the boundary excitation is judiciously chosen. All these interesting works are concerned
with the one-dimensional setting due to their essential use of the inverse Sturm–Liouville the-
ory. Wei et al [51] numerically investigated the recovery of the zeroth-order coefficient and
fractional order in a time-fractional reaction-diffusion-wave equation from lateral boundary
data. A direct extension of these theoretical works to the multi-dimensional case is challen-
ging since the Gel’fand–Levitan theory is no longer applicable. Kian et al [31] provided the
first results for the multi-dimensional case, including the uniqueness for identifying two spa-
tially distributed parameters in the subdiffusion model from one single lateral observation with
a specially designed excitation Dirichlet input; see also [17] for a related study on determining
the manifold from one measurement corresponding to a specialized source. Kian [30] stud-
ied also the issue of simultaneous recovery of these parameters along with the order and initial
data using a similar choice of the boundary data. However, in the works [30, 31], the excitation
data, which plays the role of infinity measurements, is numerically inconvenient to realize, if
not impossible at all; see remark 3.3 and the appendix for further discussions. These consid-
erations motivate the current work, i.e. to design robust numerical algorithm for recovering
multiple parameters from a single partial boundary measurement for multi-dimensional sub-
diffusion with a computable excitation Neumann data, in the presence of a partly unknown
medium.

In this work, we make the following contributions to the mathematical analysis and numer-
ics of the concerned inverse problem. First, we examine the feasibility to recover multiple
parameters. We show that if the coefficient a is piecewise constant as defined in (1.2), then one
single boundary measurement can uniquely determine the coefficient a and fractional order α,
even though the initial data u0 and source f are unknown. Note that the exciting Neumann data
g given in (1.3) is easy to realize and hence allows the numerical recovery. The proof relies on
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the asymptotic behavior of Mittag–Leffler functions, analyticity in time of the solution, and
the uniqueness of the inverse conductivity problem (for elliptic problems) from one boundary
measurement. In particular, the subdomain D can be either a convex polygon/polyhedron or a
disc/ball, cf theorem 3.2 and remark 3.2. This analysis strategy follows a well-established pro-
cedure in the community, and roughly it consists of two steps. (1) Using the time-analyticity,
the uniqueness for the original inverse problem is reduced to the one for an inverse prob-
lem for the corresponding time-independent elliptic equation; (2) The reduction can be done
by the Laplace transform or considering the asymptotics. Both strategies of reductions are
well known. For example, the former way is used for an Dirichlet-to-Neumann map for the
inverse coefficient problem for a multi-term time-fractional diffusion equation [35], while the
latter way is used for the Dirichlet-to-Neumann map for the inverse parabolic problem [18,
section 4, chapter 9]. Second, the uniqueness analysis lends itself to the development of a
robust numerical algorithm: we develop a three-step recovery algorithm for identifying the
piecewise constant coefficient a and the fractional order α: (i) use the asymptotic behavior of
the solution of problem (1.1) near t= 0 to recover α; (ii) use analytic continuation to extract
the solution of problem (1.1) with zero f and u0; (iii) use the level set method to recover the
shape of subdomain D. To the best of our knowledge, this is the first work on the numerical
recovery of a (piecewise constant) diffusion coefficient in the context of multi-dimensional
subdiffusion model with missing initial and source data. Last, we present extensive numer-
ical experiments to illustrate the feasibility of the approach. We refer interested readers to [43,
46] for some numerical studies for identifying a piecewise constant source from the boundary
measurement.

The rest of the paper is organized as follows. In section 2 we describe preliminary results
on the model, especially time analyticity of the data. Then in section 3 we give the uniqueness
result in case of piecewise constant a, and in section 4 we develop a recovery algorithm based
on the level set method.We present extensive numerical experiments to illustrate the feasibility
of recovering multiple parameters in section 5. In an appendix, we discuss the possibility of
recovering two coefficients from one boundary measurement induced by a specialized bound-
ary excitation. Throughout, the notation ( · , ·) denotes the standard L2(Ω) inner product, and
⟨ · , · ⟩ the L2(∂Ω) inner product. For a Banach space B, Cω(T,∞;B) denotes the set of func-
tions valued in B and analytic in t ∈ (T,∞). The notation c, with or without a subscript, denotes
a generic constant which may change at each occurrence, but it is always independent of the
concerned quantities.

2. Preliminaries

In this section, we present preliminary analytical results. Let A be the L2(Ω) realization of
the elliptic operatorA, with a domain Dom(A) := {v ∈ L2(Ω) :Av ∈ L2(Ω),∂νv|∂Ω = 0}. Let
{λℓ}ℓ⩾1 be a strictly increasing sequence of eigenvalues of A, and denote the multiplicity of
λℓ by mℓ and {φℓ,k}mℓ

k=1 an L2(Ω) orthonormal basis of ker(A−λℓ). That is, for any ℓ ∈ N,
k= 1, . . . ,mℓ: {

Aφℓ,k = λℓφℓ,k in Ω,

a∂νφℓ,k = 0 on ∂Ω.
(2.1)

The eigenvalues {λℓ}∞ℓ=1 are nonnegative, and the eigenfunctions {φℓ,k : k= 1, . . . ,mℓ}∞ℓ=1
form a complete orthonormal basis of L2(Ω). Note that λ1 = 0 (and has multiplicity 1) and the
corresponding eigenfunction φ1 = |Ω|− 1

2 is constant valued, where |E| denotes the Lebesgue
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measure of a set E. Due to the piecewise constancy of the coefficient a, φℓ,k is smooth in D
and Ω \D. Moreover, it satisfies the following transmission condition on the interface ∂D:

φℓ,k|− = φℓ,k|+ and ∂nφℓ,k|− = (1+µ)∂nφℓ,k|+ on ∂D, (2.2)

where φℓ,k|+ and φℓ,k|− denote the limits from D and Ω \D to the interface ∂D, respectively,
and ∂nφℓ,k|± denotes the derivative with respect to the unit outer normal vector n on ∂D. Then
we define the fractional power As (s≥ 0) via functional calculus by

Asv :=
∞∑
ℓ=1

λsℓ

mℓ∑
k=1

(v,φℓ,k)φℓ,k,

with a domain Dom(As) = {v ∈ L2(Ω) : Asv ∈ L2(Ω)}, and the associated graph norm

∥v∥Dom(As) =

( ∞∑
ℓ=1

λ2sℓ

mℓ∑
k=1

(v,φℓ,k)
2

) 1
2

.

We use extensively the Mittag–Leffler function Eα,β(z) defined by ([32, pp 40–45], [20,
section 3.1])

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+β)
, ∀z ∈ C.

The function Eα,β(z) generalizes the exponential function ez. The following decay estimate of
Eα,β(z) is crucial in the analysis below; See e.g. [32, equation (1.8.28), p 43] and [20, theorem
3.2] for the proof.

Lemma 2.1. Letα ∈ (0,2), β ∈ R,φ ∈ (α2 π,min(π,απ)) andN ∈ N. Then forφ≤ |argz| ≤ π
with |z| →∞, there holds

Eα,β(z) =−
N∑
k=1

z−k

Γ(β−αk)
+O(|z|−N−1).

By linearity, we may split the solution u of problem (1.1) into u= ui+ ub, with ui and ub
solving
∂αt ui+Aui = f in Ω× (0,T],

a∂νui = 0 on ∂Ω× (0,T],

ui(0) = u0 in Ω

and


∂αt ub+Aub = 0 in Ω× (0,T],

a∂νub = g on ∂Ω× (0,T],

ub(0) = 0 in Ω,

(2.3)

respectively. The following result gives the representations of ui and ub.

Proposition 2.1. Let u0, f ∈ L2(Ω). Then there exist unique solutions ui,ub ∈ L2(0,T;H1(Ω))
that can be respectively represented by

ui(t) = (u0,φ1)φ1 +
(f,φ1)φ1tα

Γ(1+α)

+
∞∑
ℓ=2

mℓ∑
k=1

([
(u0,φℓ,k)−λ−1

ℓ (f,φℓ,k)
]
Eα,1(−λℓtα)+λ−1

ℓ (f,φℓ,k)
)
φℓ,k,

ub(t) =
∞∑
ℓ=1

mℓ∑
k=1

ˆ t

0
(t− s)α−1Eα,α(−λℓ,k(t− s)α)⟨g(s),φℓ,k⟩dsφℓ,k.

5
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Hence, the solution u to problem (1.1) can be represented as

u(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ

+
∞∑
ℓ=1

ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)

mℓ∑
k=1

⟨g(s),φℓ,k⟩dsφℓ,k,

with ρℓ given by

ρℓ :=


(u0,φ1)φ1 +

∞∑
ℓ=2

mℓ∑
k=1

λ−1
ℓ ( f,φℓ,k)φℓ,k, ℓ= 0,

( f,φ1)
Γ(1+α)φ1, ℓ= 1,
mℓ∑
k=1

[
(u0,φℓ,k)−λ−1

ℓ ( f,φℓ,k)
]
φℓ,k, ℓ= 2,3, . . . .

(2.4)

Proof. The representations follow from the standard separation of variables technique ([47],
[20, section 6.2]). The piecewise constancy of the diffusivity a requires special care due to a
lack of global regularity. By multiplying the governing equation of ui by φℓ,k and then integ-
rating over Ω, we get

∂αt (ui(t),φℓ,k)+ (Aui(t),φℓ,k) = (f,φℓ,k).

Integrating by parts twice and using the transmission condition (2.2) for φℓ,k (and ui) on ∂D
gives

(Aui(t),φℓ,k) =−
ˆ
Ω\D

∇· (∇ui)φℓ,k dx−
ˆ
D
∇· ((1+µ)∇ui)φℓ,k dx

=−
ˆ
∂Ω

(∇ui · ν)φℓ,k dS−
ˆ
∂D

(∇ui · n−)φℓ,k|− dS+
ˆ
Ω\D

∇ui ·∇φℓ,k dx

−
ˆ
∂D

(1+µ)(∇ui · n+)φℓ,k|+ dS+
ˆ
D
(1+µ)∇ui ·∇φℓ,k dx

=

ˆ
Ω\D

∇ui ·∇φℓ,k dx+
ˆ
D
(1+µ)∇ui ·∇φℓ,k dx

=

ˆ
∂Ω

(∇φℓ,k · ν)ui dS+
ˆ
∂D

(∇φℓ,k · n−)ui|− dS−
ˆ
Ω\D

∇· (∇φℓ,k)ui dx

+

ˆ
∂D

(1+µ)(∇φℓ,k · n+)ui|+ dS−
ˆ
D
∇· ((1+µ)∇φℓ,k)ui dx

= (ui,Aφℓ,k) = λℓ(ui,φℓ,k).

Hence, the scalar function uℓ,ki (t) := (ui(t),φℓ,k) satisfies the following initial value problem
for a fractional ordinary differential equation:

(∂αt +λℓ)u
ℓ,k
i (t) = fℓ,k := (f,φℓ,k) for 0< t⩽ T, with uℓ,ki (0) = uℓ,k0 := (u0,φℓ,k).

Then uℓ,ki (t) is given by [20, proposition 4.5]

uℓ,ki (t) = uℓ,k0 Eα,1(−λℓtα)+ fℓ,k

ˆ t

0
sα−1Eα,α(−λℓsα)ds.

6
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Note that u1i = u10 +
1

Γ(1+α) f1t
α. Now using the identity

d
dt
Eα,1(−λtα) =−λ tα−1Eα,α(−λtα), (2.5)

we have for ℓ≥ 2 and k= 1, . . . ,mℓ that

uℓ,ki (t) = uℓ,k0 Eα,1(−λℓtα)+λ−1
ℓ [1−Eα,1(−λℓtα)] fℓ,k

=
(
uℓ,k0 −λ−1

ℓ fℓ,k
)
Eα,1(−λℓtα)+λ−1

ℓ fℓ,k.

This gives the representation of ui. Similarly, multiplying the governing equation for ub by
φℓ,k and integrating over Ω give ∂αt (ub(t),φℓ,k)+ (Aub(t),φℓ,k) = 0. Repeating the argument
yields that uℓ,kb (t) := (ub(t),φℓ,k) satisfies

(∂αt +λℓ)u
ℓ,k
b (t) = ⟨g(t),φℓ,k⟩ for 0< t⩽ T, with uℓ,kb (0) = 0.

The solution uℓ,kb (t) is given by [20, proposition 4.5]

uℓ,kb (t) =
ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)⟨g(s),φℓ,k⟩dsφℓ,k.

Thus the desired assertion follows. The representation of the solution u to problem (1.1) fol-
lows directly from that of ub and ui, and the identity (2.5).

Next we show properties of the boundary data h. This is achieved by first proving related
properties of u and then applying the trace theorem. Below we study the analyticity of

ui(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ,

ub(t) =
∞∑
ℓ=1

mℓ∑
k=1

ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)⟨g(s),φℓ,k⟩dsφℓ,k.

Since our focus is the trace on ∂Ω, we only study u on the subdomain Ω \D. Recall that for a
Banach space B, the notation Cω(T,∞;B) denotes the set of functions valued in B and analytic
in t ∈ (T,∞).

Proposition 2.2. Let D ′ ⊃ D be a small neighborhood of D with a smooth boundary and
denote Ω ′ =Ω \D ′. For u0 ∈ L2(Ω), f ∈ L2(Ω) and g as in (1.3), the following statements
hold.

(i) ui ∈ Cω(0,∞;H2(Ω ′)) and ub ∈ Cω(T1 + ε,∞;H2(Ω ′)) for arbitrarily fixed ε> 0.
(ii) The Laplace transforms ûi(z) and ûb(z) of ui and ub in t exist for all ℜ(z)> 0 and are

respectively given by

ûi(z) = z−1ρ0 +Γ(α+ 1)z−α−1ρ1 +
∞∑
ℓ=2

ρℓzα−1

zα +λℓ

and ûb(z) =
∞∑
ℓ=1

mℓ∑
k=1

⟨ĝ(z),φℓ,k⟩φℓ,k

zα +λℓ
.

7
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Proof. Throughout this proof, let ε> 0 be arbitrarily fixed. Since λ1 = 0, by lemma 2.1, there
exist constants c> 0 and θ ∈ (0, π2 ) such that for any z ∈ Σθ := {z ∈ C \ {0} : |arg(z)| ≤ θ},
we have

∥ui(z)∥2Dom(A) =
∞∑
n=1

λ2n

mn∑
j=1

(
φn,j,ρ0 + ρ1z

α +
∞∑
ℓ=2

Eα,1(−λℓzα)ρℓ

)2

=
∞∑
n=2

λ2n

mn∑
j=1

(
φn,j,

∞∑
ℓ=2

mℓ∑
k=1

{Eα,1(−λℓzα) [(u0,φℓ,k)

−λ−1
ℓ (f,φℓ,k)

]
+λ−1

ℓ (f,φℓ,k)
}
φℓ,k

)2

⩽ c
∞∑
n=2

λ2nEα,1(−λnzα)2
mn∑
j=1

{
(u0,φn,j)

2 +λ−2
n (f,φn,j)

2
}
+c

∞∑
n=1

mn∑
j=1

(f,φn,j)
2

⩽ c|z|−2α
∞∑
n=2

mn∑
j=1

{
(u0,φn,j)

2 +λ−2
n (f,φn,j)

2
}
+c∥ f∥2L2(Ω)

⩽ c|z|−2α
(
∥u0∥2L2(Ω) + ∥f∥2L2(Ω)

)
+c∥ f∥2L2(Ω).

Since u0, f ∈ L2(Ω), ∥ui(z)∥2Dom(A) is uniformly bounded for z ∈ Σθ. Since Eα,1(−λnzα) is
analytic in z ∈ Σθ and the series converges uniformly in any compact subset of Σθ, ui(t) is
analytic in t ∈ (0,∞) as a Dom(A)-valued function, i.e. ui ∈ Cω(0,∞;Dom(A)). By Sobolev
embedding, ui ∈ Cω(0,∞;H2(Ω ′)).

Next we prove the analyticity of ub. By the choice g(x, t) = η(x)ψ(t) in (1.3) and integration
by parts, for t> T1, u1b(t) := (ub(t),φ1) is given by

u1b(t) =
1

Γ(α)

ˆ t

0
(t− s)α−1⟨g(s),φ1⟩ds=

⟨η,φ1⟩
Γ(α)

ˆ t

0
(t− s)α−1ψ(s)ds

=
⟨η,φ1⟩
αΓ(α)

[
−(t− s)αψ(s)|s= t

s=0 +

ˆ t

0
(t− s)αψ′(s)ds

]
=

⟨η,φ1⟩
Γ(α+ 1)

ˆ T1

T0

(t− s)αψ′(s)ds,

where the last step follows from the condition on ψ in (1.4). Thus the time-analyticity of
u1b(t)φ1 for t ∈ (T1 + ε,∞) follows. Next, again by integration by parts, (1.3) and (1.4) and the
identity (2.5), for t> T1, u

ℓ,k
b (t) := (ub(t),φℓ,k) with ℓ≥ 2, k= 1, . . . ,mℓ can be written as

uℓ,kb (t) =
ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)⟨g(s),φℓ,k⟩ds

=

ˆ t

0

⟨g(s),φℓ,k⟩
λℓ

d
ds
Eα,1(−λℓ(t− s)α)ds

= λ−1
ℓ

[
⟨g(s),φℓ,k⟩Eα,1(−λℓ(t− s)α)

]s=t
s=0

− ⟨η,φℓ,k⟩
λℓ

ˆ t

0
Eα,1(−λℓ(t− s)α)ψ′(s)ds

=
⟨η,φℓ,k⟩
λℓ

ψ(t)− ⟨η,φℓ,k⟩
λℓ

ˆ T1

T0

Eα,1(−λℓ(t− s)α)ψ′(s)ds=: uℓ,kb,1(t)+ uℓ,kb,2(t).

8
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Since ψ(t) = 1 for t> T1, we see that uℓ,kb,1(t) is a constant for t> T1. Next we consider the
following boundary value problem

AU= 0 in Ω, with a∂νU= η on ∂Ω. (2.6)

The compatibility condition ⟨η,1⟩= 0 implies that there exist solutions to problem (2.6). We
take an arbitrary solution U. Since a is piecewise constant and η ∈ H 1

2 (∂Ω), we know that
U ∈ H1(Ω) and its restriction U|Ω ′ ∈ H2(Ω ′). Integrating by parts twice yields

⟨η,φℓ,k⟩= λℓ(U,φℓ,k).

Similar to the argument for proposition 2.1, from the transmission condition (2.2), we deduce

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,1(t)φℓ,k =
∞∑
ℓ=2

mℓ∑
k=1

ψ(t)(U,φℓ,k)φℓ,k,

which is analytic in t ∈ (T1 + ε,∞) since it is constant in time and U ∈ L2(Ω). Moreover, by
the standard elliptic regularity theory,

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,1φℓ,k ∈ Cω(T1 + ε,∞;H2(Ω′)).

Recall Young’s inequality for convolution, i.e. ∥f ∗ g∥Lr(R) ≤ ∥ f∥Lp(R)∥g∥Lq(R) for p,q,r≥ 1
with p−1 + q−1 = r−1 + 1 and any f ∈ Lp(R) and g ∈ Lq(R). Then by Young’s inequality,
lemma 2.1 and the regularity estimate

∑∞
ℓ=2λ

−2
ℓ

∑mℓ

k=1⟨η,φℓ,k⟩2 ≤ ∥U∥L2(Ω) <∞, we deduce∥∥∥∥∥
∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,2(z)φℓ,k

∥∥∥∥∥
2

Dom(A)

=
∞∑
n=1

λ2n

mn∑
j=1

(
φn,j,

∞∑
ℓ=2

mℓ∑
k=1

uℓ,kb,2(z)φℓ,k

)2

=
∞∑
n=2

λ2n

mn∑
j=1

(
⟨η,φn,j⟩
λn

ˆ T1

T0

Eα,1(−λn(z− s)α)ψ′(s)ds

)2

≤
∞∑
n=2

mn∑
j=1

⟨η,φn,j⟩2
(

c
λn|z−T1|α

ˆ T1

T0

|ψ′(s)|ds
)2

≤
(
c∥ψ∥W1,∞(R+)

|z−T1|α

)2 ∞∑
n=2

λ−2
n

mn∑
j=1

|⟨η,φn,j⟩|2 ≤
c

|z−T1|2α
.

Since uℓ,kb,2(t) is analytic in (T1 + ε,∞) and the series
∑∞

ℓ=2

∑mℓ

k=1 u
ℓ,k
b,2(z)φℓ,k converges uni-

formly in Dom(A) for z ∈ T1 + ε+Σθ, it belongs to Cω(T1 + ε,∞;Dom(A)), and hence
ub ∈ Cω(T1 + ε,∞;H2(Ω ′)). This proves part (i).

The argument for part (i) implies that the series converges uniformly in Dom(A) for t ∈
(0,∞), and

∥e−tzui(t)∥Dom(A) ⩽ ce−tℜ(z)(t−α + 1), t> 0.

The function e−tℜ(z)(t−α + 1) is integrable in t over (0,∞) for any fixed z with ℜ(z)> 0.
By Lebesgue’s dominated convergence theorem and taking Laplace transform termwise, we
obtain

ûi(z) = z−1ρ0 +Γ(α+ 1)z−α−1ρ1 +
∞∑
ℓ=2

ρℓzα−1

zα +λℓ
, ∀ℜ(z)> 0.

9
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The argument for part (i) also implies

∥e−tzub(t)∥Dom(A) ⩽ ce−tℜ(z)|t−T1|−α, t> 0.

Then termwise Laplace transform and Lebesgue’s dominated convergence theorem complete
the proof of the proposition.

Thus, ui and ub are analytic in time and have H2(Ω ′) regularity. Since ∂Ω is Lipschitz and
piecewise C1,1, their traces on ∂Ω are well defined. The next result is direct from the trace
theorem and Sobolev embedding theorem. Here, we use x and y denote the variables in Ω and
on ∂Ω, respectively.

Corollary 2.1. Let the assumptions in proposition 2.2 hold. Then the data h= u|Γ0×(0,T) to
problem (1.1) can be represented by

h(t) = ρ0 + ρ1t
α +

∞∑
ℓ=2

Eα,1(−λℓtα)ρℓ︸ ︷︷ ︸
=:hi(t)

+
∞∑
ℓ=1

mℓ∑
k=1

ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)⟨g(s),φℓ,k⟩dsφℓ,k︸ ︷︷ ︸

=:hb(t)

.

Moreover, hi and hb satisfy the following properties.

(i) hi ∈ Cω(0,∞;L2(Γ0)) and hb ∈ Cω(T1 + ε,∞;L2(Γ0)) for arbitrarily fixed ε> 0.
(ii) The Laplace transforms ĥi(z) and ĥb(z) of hi and hb in t exist for allℜ(z)> 0 and are given

by

ĥi(z) = z−1ρ0 +Γ(α+ 1)z−α−1ρ1 +
∞∑
ℓ=2

ρℓzα−1

zα +λℓ
,

ĥb(z) =
∞∑
ℓ=1

mℓ∑
k=1

⟨ĝ(z),φℓ,k⟩φℓ,k

zα +λℓ
.

Remark 2.1. The analysis of theorem 3.1 crucially exploits the analyticity of the measurement
hi(t) in time, which relies on condition (1.4), i.e.ψ(t)≡ 0 for t ∈ [0,T0]. The conditionψ(t)≡ 1
for t⩾ T1 for some T1 < T from (1.4) ensures the time analyticity of hb(t) for t> T1 + ε, which
is needed for theorem 3.2. It should be interpreted as analytically extending the observation
hb(t) by analytically extending ψ(t), both from (T1,T) to (T1,∞). Alternative conditions on
ψ(t) ensuring the time analyticity of hb(t) for t> T1 + ε, e.g. ψ(t) vanishes identically on
(T1,T), would also be sufficient for theorem 3.2.

3. Uniqueness

Now we establish a uniqueness result for recovering the fractional order α and piecewise con-
stant a. The proof proceeds in two steps: First we show the uniqueness of the order α from
the observation, despite that the initial condition u0 and source f are unknown. Then we show
the uniqueness of a. The key observation is that the contributions from u0 and f can be extrac-
ted explicitly. Since the Dirichlet data is only available on a sub-boundary Γ0, we view ρk as

10
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a L2(Γ0)-valued function. The notation K denotes the set {k ∈ N : ρk ̸≡ 0in L2(Γ0)}, i.e. the
support of the sequence (ρ0,ρ1, . . .) in L2(Γ0) sense, similarly, K̃= {k ∈ N : ρ̃k ̸≡ 0in L2(Γ0)},
and N∗ = N \ {1}. Below we denote by A the admissible set of conductivities, i.e.

A= {1+µχD(x) : µ >−1and D⊂ Ωis a convex polygon}.

Theorem 3.1. Let α,α̃ ∈ (0,1), (a, f,u0),(ã, f̃, ũ0) ∈ A×L2(Ω)×L2(Ω), and fix g as (1.3)
with ψ(t) satisfying condition (1.4). Let h and h̃ be the corresponding Dirichlet observations.
Then for some σ> 0, the condition h= h̃ on Γ0 × [T0 −σ,T0] implies α= α̃, ρ0 = ρ̃0 and
{(ρk,λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ if K,K̃ ̸= ∅.

Proof. By the definition of g, we have g(y, t)≡ 0 for y ∈ ∂Ω, t ∈ [0,T0]. Then by corollary
2.1, h(y, t) admits a Dirichlet representation

h(y, t) = ρ0(y)+ ρ1(y)t
α +

∑
k∈K∩N∗

ρk(y)Eα,1(−λktα).

By corollary 2.1(i), h(t) is analytic as an L2(∂Ω)-valued function in t> 0. By analytic con-
tinuation, the condition h(t) = h̃(t) for t ∈ [T0 −σ,T0] implies that h(t) = h̃(t) in L2(Γ0) for all
t> 0, i.e.

ρ0(y)+ ρ1(y)t
α +

∑
k∈K∩N∗

ρk(y)Eα,1(−λktα) = ρ̃0(y)+ ρ̃1(y)t
α̃ +

∑
k∈K̃∩N∗

ρ̃k(y)Eα̃,1(−λ̃ktα̃).

From the decay property of Eα,1(−η) (see lemma 2.1), we derive ρ0(y)+ ρ1(y)tα = ρ̃0(y)+
ρ̃1(y)tα̃, indicating ρ0 = ρ̃0 and ρ1 = ρ̃1. Moreover, we have α= α̃ if 1 ∈K. If 1 ̸∈K and
1 ̸∈ K̃, i.e. ρ1 = ρ̃1 = 0, then∑

k∈K∩N∗

ρk(y)Eα,1(−λktα) =
∑

k∈K̃∩N∗

ρ̃k(y)Eα̃,1(−λ̃ktα̃) on Γ0 × (0,∞).

Proposition 2.1(ii) and Laplace transform give

∑
k∈K∩N∗

ρk(y)zα−1

zα +λk
=

∑
k∈K̃∩N∗

ρ̃k(y)zα̃−1

zα̃ + λ̃k
.

Assuming that α > α̃, dividing both sides by zα̃−1 and setting ζ := zα, we have

∑
k∈K∩N∗

ρk(y)ζ1−
α̃
α

ζ +λk
=

∑
k∈K̃∩N∗

ρ̃k(y)

ζ
α̃
α + λ̃k

.

Upon noting K ̸= ∅, choosing an arbitrary k0 ∈K and rearranging terms, we derive

ρk0(y)ζ
1− α̃

α =

 ∑
k∈K̃∩N∗

ρ̃k(y)

ζ
α̃
α + λ̃k

−
∑

k∈K∩N∗\{k0}

ρk(y)ζ1−
α̃
α

ζ +λk

(ζ +λk0).

Letting ζ →−λk0 and noting α > α̃, the right hand side tends to zero (since all λ̃k are pos-
itive, and arg((−λk0)

α̃
α ) = α̃π

α ∈ (0,π)) and hence ρk0 ≡ 0 in L2(Γ0), which contradicts the

11
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assumption k0 ∈K. Thus, we deduce α≤ α̃. The same argument yields α≥ α̃, so α= α̃.
These discussions thus yield∑

k∈K∩N∗

ρk(y)
ζ +λk

=
∑

k∈K̃∩N∗

ρ̃k(y)

ζ + λ̃k
. (3.1)

Note that both sides of the identity (3.1) are L2(Γ0)-valued functions in ζ. Next we show
both converge uniformly in any compact subset in C \ ({−λk}k∈K∩N∗ ∪{−λ̃k}k∈K̃∩N∗) and

are analytic in C \ ({−λk}k∈K∩N∗ ∪{−λ̃k}k∈K̃∩N∗). Indeed, since u0, f ∈ L2(Ω), for all ζ in

any compact subset of C \ ({−λk}k∈K∩N∗ ∪{−λ̃k}k∈K̃∩N∗), we have∥∥∥∥∥ ∑
k∈K∩N∗

ρk
ζ +λk

∥∥∥∥∥
2

Dom(A)

⩽ c
∑
ℓ∈N∗

λ2ℓ
|(u0,φℓ)|2 +λ−2

ℓ |(f,φℓ)|2

|ζ +λℓ|2

⩽ c
∑
ℓ∈N∗

(
|(u0,φℓ)|2 +λ−2

ℓ |(f,φℓ)|2
)
<∞.

Hence, by the trace theorem, the identity (3.1) holds for all ζ ∈ C \ ({−λk}k∈K∩N∗ ∪
{−λ̃k}k∈K̃∩N∗). Assume that λj ̸∈ {λ̃k}k∈K̃∩N∗ for some j ∈K∩N∗. Then we can choose a

small circle Cj centered at −λj which does not contain {−λ̃k}k∈K̃∩N∗ . Integrating on Cj and
applying the Cauchy theorem give 2π

√
−1ρj/λj = 0, which contradicts the assumption ρj ̸≡ 0

in L2(Γ0). Hence, λj ∈ {λ̃k}k∈K̃∩N∗ for every j ∈K∩N∗. Likewise, λ̃j ∈ {λk}k∈K∩N∗ for every

j ∈ K̃∩N∗, and hence {λk}k∈K∩N∗ = {λ̃k}k∈K̃∩N∗ . From (3.1), we obtain∑
k∈K∩N∗

ρk(y)− ρ̃k(y)
ζ +λk

= 0, ∀ζ ∈ C \ {−λk}k∈K∩N∗ .

Varying j ∈K∩N∗ and integrating overCj, we obtain 2π
√
−1(ρj− ρ̃j)/λj = 0, which directly

implies ρj = ρ̃j in L2(Γ0). This completes the proof of the theorem.

Remark 3.1. The conditionK ̸= ∅ holds whenever the following condition is valid ( f,φ1) ̸= 0
or (u0,φℓ,k)−λ−1

ℓ ( f,φℓ,k) ̸= 0, k= 1, . . . ,mℓ, ℓ= 2,3, . . .. Note that the condition ( f,φ1) ̸= 0
does not rely on the unknown parameter a, and can be easily guaranteed.

The next result gives the uniqueness of recovering the diffusion coefficient a from the lateral
boundary observation.

Theorem 3.2. Let condition (1.4) be fulfilled, and let (a, f,u0), (ã, f̃, ũ0) ∈ A×L2(Ω)×L2(Ω),
and fix g as (1.3). Let h and h̃ be the corresponding Dirichlet data. Then for any σ ∈ (0,T0],
the condition h= h̃ on Γ0 × [T0 −σ,T] implies a= ã.

Proof. In view of the linearity of problem (1.1), we can decompose the data h(t) into

h(t) = hi(t)+ hb(t), t ∈ (0,T],

with hi(t) and hb(t) given by

hi(t) = ρ0 + ρ1t
α +

∑
k∈K∩N∗

ρkEα,1(−λktα),

hb(t) =
∞∑
ℓ=1

ˆ t

0
(t− s)α−1Eα,α(−λℓ(t− s)α)

mℓ∑
k=1

⟨g(s),φℓ,k⟩dsφℓ,k,

12
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which solve problem (1.1) with g≡ 0 and f = u0 ≡ 0, respectively. By the choice of g in (1.3),
the interval [0,T] can be divided into two subintervals: (0,T0] and [T0,T]. For t ∈ (0,T0),ψ(t)≡
0, theorem 3.1 implies that {(ρk,λk)}k∈K = {(ρ̃k, λ̃k)}k∈K̃ and α= α̃, from which we deduce

hi(t) = h̃i(t) for all t> 0. For t ∈ [T0,T], this and the condition h(t) = h̃(t) imply hb(t) = h̃b(t)
in L2(Γ0), and hence

∞∑
ℓ=1

ˆ t

T0

(t− s)α−1Eα,α(−λℓ(t− s)α)
mℓ∑
k=1

⟨g(s),φℓ,k⟩dsφℓ,k

=
∞∑
ℓ=1

ˆ t

T0

(t− s)α−1Eα,α(−λ̃ℓ(t− s)α)
m̃ℓ∑
k=1

⟨g(s), φ̃ℓ,k⟩ds φ̃ℓ,k, t ∈ [T0,T].

By the analyticity in corollary 2.1, the above identity holds for t ∈ [T0,∞). Thus applying
Laplace transform on both side gives

∞∑
ℓ=2

∑mℓ

k=1⟨ĝ(z),φℓ,k⟩φℓ,k

zα +λℓ
=

∞∑
ℓ=2

∑m̃ℓ

k=1⟨ĝ(z), φ̃ℓ,k⟩φ̃ℓ,k

zα + λ̃ℓ
, ∀ℜ(z)> 0. (3.2)

Since λ1 = λ̃1 = 0 and φ1 = φ̃1 = |Ω|− 1
2 , the index in (3.2) starts with ℓ= 2. Below we repeat

the argument for theorem 3.1. First we show that both sides of (3.2) are analytic with ζ = zα

in any compact subset of C \ {−λℓ,−λ̃ℓ}ℓ≥2. Let U ∈ Dom(A
1
4+ε) be a solution of prob-

lem (2.6), for all ζ in a compact subset of C \ {−λℓ,−λ̃ℓ}ℓ≥2, we have∥∥∥∥∥
∞∑
ℓ=2

∑mℓ

k=1⟨ĝ(ζ
1
α ),φℓ,k⟩φℓ,k

ζ +λℓ

∥∥∥∥∥
2

Dom(A
1
4+ε)

⩽ c
∞∑
ℓ=2

λ
1
2+2ε
ℓ

mℓ∑
k=1

∣∣∣∣ ⟨η,φℓ,k⟩
ζ +λℓ

∣∣∣∣2

= c
∞∑
ℓ=1

λ
1
2+2ε
ℓ

mℓ∑
k=1

∣∣∣∣λℓ(U,φℓ,k)

ζ +λℓ

∣∣∣∣2 ⩽ c∥U∥2
Dom(A

1
4+ε)

<∞.

Since each term of the series is a Dom(A
1
4+ε)-valued function analytic in ζ and converges

uniformly in ζ, by the trace theorem, we obtain that both sides of (3.2) are L2(∂Ω)-valued
functions analytic in ζ ∈ C \ {−λℓ,−λ̃ℓ}ℓ≥2. Since λℓ, λ̃ℓ > 0 for ℓ≥ 2, we may take ζ→ 0
in (3.2) and obtain

∞∑
ℓ=2

∑mℓ

k=1⟨ĝ(0),φℓ,k⟩φℓ,k

λℓ
=

∞∑
ℓ=2

∑m̃ℓ

k=1⟨ĝ(0), φ̃ℓ,k⟩φ̃ℓ,k

λ̃ℓ
. (3.3)

Hence, w= w̃ on Γ0, where w and w̃ are the Dirichlet boundary data with a and ã in the elliptic
problem {

−∇ · (a∇w) = 0 in Ω,

a∂νw= ĝ(0) on ∂Ω
(3.4)

with the compatibility condition
´
Ω
wdx= 0. Indeed, the solution w of (3.4) can be

represented as

w=
∞∑
ℓ=2

mℓ∑
k=1

(w,φℓ,k)φℓ,k =
∞∑
ℓ=2

mℓ∑
k=1

λ−1
ℓ ⟨ĝ(0),φℓ,k⟩φℓ,k,
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where the first equality follows from the compatibility condition
´
Ω
wdx= 0 and the second

is due to integration by part. By the choice of g in (1.3), the elliptic problem (3.4) is uniquely
solvable. Then from [13, theorem 1.1], we deduce that D= D̃ is uniquely determined by the
input ĝ(0) = ψ̂(0)η. Indeed, Friedman and Isakov [13] proved the unique determination of the
convex polygon D for the case µ≡ 1, based on extending the solution w harmonically across
a vertex of D and leading a contradiction. The proof does not depend on the knowledge of the
parameter µ and hence it is also applicable here. Once D is determined, it suffices to show the
uniqueness of the scalar µ. Suppose µ≤ µ̃, i.e. a≤ ã in D and a≡ ã≡ 1 outside D. Thus w
and w̃ are harmonic functions near ∂Ω with identical Cauchy data on Γ0, we conclude w= w̃
near ∂Ω. By multiplying both sides of the governing equation in (3.4) with w, integrating over
the domain Ω and applying Green’s formula, we have

0=
ˆ
Ω

−∇ · (a∇w)wdx=
ˆ
Ω

a|∇w|2 dx−
ˆ
∂Ω

w∂νwdS,

i.e. ˆ
Ω

a|∇w|2 dx=
ˆ
∂Ω

w∂νwdS.

Now since w and w̃ have identical Cauchy data on the boundary ∂Ω, we have
´
∂Ω
w∂νwdS=´

∂Ω
w̃∂νw̃dS, and consequently

ˆ
Ω

a|∇w|2 dx=
ˆ
Ω

ã|∇w̃|2 dx.

This identity and the inequality ã≥ a a.e. in Ω imply
ˆ
Ω

a|∇w|2 dx≥
ˆ
Ω

a|∇w̃|2 dx,

which immediately implies

1
2

ˆ
Ω

a|∇w|2dx−
ˆ
∂Ω

wĝ(0)dS≥ 1
2

ˆ
Ω

a|∇w̃|2 dx−
ˆ
∂Ω

w̃ĝ(0)dS.

By the Dirichlet principle [10], w is the minimizer of the energy integral, and hence w= w̃ and
a= ã.

Remark 3.2. Note that the uniqueness of the inclusion D in [13] relies on the assumption D
being a convex polygonwith diam(D)< dist(D,∂Ω). Alessandrini and Isakov [1] removed the
diameter assumption for a specialized choice of the boundary data. The works [29, 49] proved
the unique determination ofDwhenD is a disc or ball. For general shapes, even for ellipses or
ellipsoids, this inverse problem appears still open. Note that in the uniqueness proof, the key is
the reduction of the problem to the elliptic case, with a nonzero Neumann boundary condition.
In particular, the result will not hold if the temporal component ψ vanishes identically over the
interval [0,T], i.e. condition (1.4) does not hold.

Remark 3.3. If the diffusion coefficient a is not piecewise constant, it is also possible to show
the unique recovery if the boundary excitation data g is specially designed. For example, con-
sider problem (1.1) with a more general elliptic operator

Au(x) :=−∇ · (a(x)∇u(x))+ q(x)u(x), x ∈ Ω. (3.5)

14
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Figure 1. The schematic illustration of the sub-boundariesΓ ′
1,Γ1 andΓ2 of the boundary

∂Ω.

Here a ∈ C2(Ω) and q ∈ L∞(Ω) with a> 0 in Ω and q≥ 0 in Ω, and the Neumann data g is
constructed as follows. First, we choose sub-boundaries Γ1 and Γ2 such that Γ1 ∪Γ2 = ∂Ω and
Γ1 ∩Γ2 ̸= ∅. Let χ ∈ C∞(∂Ω) be a cut-off function with supp(χ) = Γ1 and χ≡ 1 on Γ ′

1, with
Γ ′
1 ⊂ Γ1 such that Γ ′

1 ∪Γ2 = ∂Ω, Γ ′
1 ∩Γ2 ̸= ∅; see figure 1 for an illustration of the geometry

in the two-dimensional case. Now we fix 0⩽ T0 < T1 < T and choose a strictly increasing
sequence {tk}∞k=0 such that t0 = T0 and limk→∞ tk = T1. Consider a sequence {pk}∞k=1 ⊂ R+

and a sequence {ψk}∞k=1 ⊂ C∞([0,∞);R+) such that

ψk =

{
0 on [0, t2k−1],

pk on [t2k,∞).

Then we fix {bk}∞k=0 ⊂ R+ such that
∑∞

k=1 bk∥ψk∥W2,∞(R+) <∞, and define the Neumann
data g by

g(y, t) :=
∞∑
k=1

gk(y, t) = χ(y)
∞∑
k=1

bkψk(t)ηk(y), (3.6)

where the set {ηk}∞k=1 is chosen to be dense in H
1
2 (∂Ω) and ∥ηk∥H 1

2 (∂Ω)
= 1. Note that the

Neumann data g defined in (3.6) plays the role of infinity measurements [5, 6], and hence the
unique recovery of the fractional order α and both a and q from one boundary measurement.
We provide a detailed proof in the appendix for completeness. See also some related discus-
sions in [30, 31] with different problem settings. However, this choice of g is impossible to
numerically realize in practice, due to the need to numerically represent infinitesimally small
quantities.

4. Reconstruction algorithm

In this section, we derive an algorithm for recovering the fractional order α and the coefficient
a, directly inspired by the uniqueness proof. We divide the recovery procedure into three steps:

(i) use the asymptotic behavior of the solution of problem (1.1) near t= 0 to recover α;
(ii) use analytic extension to extract the solution of problem (1.1) with zero f and u0;
(iii) use the level set method [42] to recover the shape of the unknown medium D⊂ Ω.
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First, we give an asymptotics of the Dirichlet data h(t) of problem (1.1). The result is direct
from the representation and properties of Eα,1(z) near z= 0 and the trace theorem.

Proposition 4.1. If u0 ∈ Dom(A1+ s
2 ) and f ∈ Dom(A s

2 ) with s> 1. Let h= u|∂Ω×(0,T) be the
Dirichlet trace of the solution to problem (1.1) with g given as (1.3), then the following asymp-
totic holds:

h(y, t) = u0(y)+ (Au0 − f)(y)tα +O(t2α) as t→ 0+.

In view of proposition 4.1, for any fixed y0 ∈ ∂Ω, the asymptotic behavior of h(y0, t) as t→
0+ allows recovering the order α. This can be achieved by minimizing the following objective
in α, c0 and c1:

J(α,c0,c1) = ∥c0 + c1t
α − h(y0, t)∥2L2(0,t0), (4.1)

for some small t0 > 0. Note that it is important to take t0 sufficiently small so that higher-order
terms can indeed be neglected. The idea of using asymptotics for order recovery was employed
in [16, 21, 22].

When recovering the diffusion coefficient a, we need to deal with the unknown functions
u0 and f. This poses significant computational challenges since standard regularized recon-
struction procedures [12] require a fully known forward operator. To overcome the chal-
lenge, we appeal to theorem 3.2: u0 and f only contribute to hi(t) which is fully determ-
ined by {λℓ,ρℓ}ℓ∈K. Indeed, by theorem 3.1, {λℓ,ρℓ}ℓ∈K can be uniquely determined by h(t),
t ∈ [0,T0]. Hence in theory we can extend h(t) = hi(t) from t ∈ [0,T0] to t ∈ [0,T], by means of
analytic continuation, to approximate the Dirichlet data of (1.1) with g≡ 0 and given u0 and
f. In practice, we look for approximations of the form

h(t)≈ p0 + p1t+ · · ·+ prtr

q0 + q1t+ · · ·+ qrtr
:= hr(t), t ∈ [0,T],

where r ∈ N is the polynomial order. This choice is motivated by the observation that Mittag–
Leffler functions can be well approximated by rational polynomials [2, 11, 38]. The approx-
imation hr can be constructed efficiently by the AAA algorithm [41]. Now, we can get the
Dirichlet data of problem (1.1) with a given g and u0 = f≡ 0, by defining the reduced data

h(t) :=

{
0, t ∈ [0,T0],

h(t)− hr(t), t ∈ [T0,T].

Below we use the reduced data h to recover a piecewise constant a. Parameter identifica-
tion for the subdiffusion model is commonly carried out by minimizing a suitable penalized
objective. Since a is piecewise constant, it suffices to recover the interface between different
media. The level set method can effectively capture the interface in an elliptic problem [3, 9,
19, 48], which we extend to the time-fractional model (1.1) below. Specifically, we consider
a slightly more general setting where the inclusion D⊂ Ω has a diffusivity value a1 and the
background Ω \D has a diffusivity value a2, with possibly unknown a1 and a2. That is, the
diffusion coefficient a is represented as

a(x) = a1H(ϕ(x))+ a2(1−H(ϕ(x))) in Ω, (4.2)

where H(x) and ϕ(x) denote the Heaviside function and level set function (a signed distance
function):

H(x) :=

{
1, x≥ 0,

0, x< 0,
and ϕ(x) :=

{
d(x,∂D), x ∈ D,
−d(x,∂D), x ∈ Ω \D,
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respectively. Then ϕ satisfies D= {x ∈ Ω : ϕ(x)> 0}, Ω \D= {x ∈ Ω : ϕ(x)< 0} and ∂D=
{x ∈ Ω : ϕ(x) = 0}. To find the values a1 and a2 and the interface ∂D, we minimize the fol-
lowing functional

J(ϕ,a1,a2) =
1
2
∥u(a)− h̄∥2L2(0,T;L2(Γ0))

+β

ˆ
Ω

|∇a|dx (4.3)

where u(a) is the solution to problem (2.3), and β > 0 is the penalty parameter. The total vari-
ation term

´
Ω
|∇a| is to stabilize the inverse problem, which is defined byˆ

Ω

|∇a|dx := sup
φ∈(C0(Ω̄))d,|φ|⩽1

ˆ
Ω

a∇·φ dx,

where | · | denotes the Euclidean norm. Then we apply the standard gradient descent method to
minimize problem (4.3). The next result gives the gradient of J. The notations J1−α

T− and Dα
T−

denote the backward Riemann–Liouville integral and derivative, defined respectively by [20,
sections 2.2 and 2.3]

J1−α
T− v(t) :=

1
Γ(1−α)

ˆ T

t
(s− t)−αv(s)ds,

Dα
T−v(t) :=− 1

Γ(1−α)

d
dt

ˆ T

t
(s− t)−αv(s)ds.

Proposition 4.2. The derivative d
daJ is formally given by

d
da
J(a) =−

ˆ T

0
∇u ·∇vdt−β∇·

(
∇a
|∇a|

)
,

where v= v(x, t;a) solves the adjoint problem
Dα
T−v−∇ · (a∇v) = 0 in Ω× [0,T),

a∂νv= (u− h)χΓ0 on ∂Ω× [0,T),

J1−α
T− v(·,T) = 0 in Ω.

(4.4)

Proof. We write J(a) = J1(a)+ J2(a), with J1(a) = 1
2∥u(a)− h∥2L2(0,T;L2(Γ0))

and J2(a) =

β
´
Ω
|∇a|dx. For the term J1, the directional derivative along b is

d
dε

∣∣∣∣
ε=0

J1(a+ εb) =
ˆ T

0

ˆ
Γ0

(u(a)− h)u′(a)[b]dSdt,

where u ′(a)[b] is the directional derivative with respect to a in the direction b. Let ã= a+ εb
and ũ solves problem (2.3) with the coefficient ã. Then w := u ′(a)[b] = limε→0 ε

−1(ũ− u).
Upon subtracting the equations for ũ and u and then taking limits, we get

∂αt w−∇ · (a∇w) =∇· (b∇u) in Ω× (0,T],

a∂νw=−b∂νu in ∂Ω× (0,T],

w(0) = 0 in Ω.

Multiplying the equation for w with any ψ ∈ L2(0,T;H1(Ω)) and integrating over Ω× (0,T)
give

ˆ T

0

ˆ
Ω

(ψ∂αt w+ a∇w ·∇ψ)dxdt=−
ˆ T

0

ˆ
Ω

b∇u ·∇ψdxdt. (4.5)
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Let v be the solution of problem (4.4). Multiplying the governing equation for v with a test
function ψ and integrating over Ω× (0,T) give

ˆ T

0

ˆ
Ω

(
ψDα

T−v+ a∇v ·∇ψ
)
dxdt=

ˆ T

0

ˆ
Γ0

(u− h)ψdSdt. (4.6)

Note that the following integration by parts formula for fractional derivatives:

ˆ T

0
v∂αt wdt=

[
wJ1−α

T− v
]t=T
t=0

+

ˆ T

0
wDα

T−vdt=
ˆ T

0
wDα

T−vdt (4.7)

(for suitably smooth v and w with w(0) = 0 and J1−α
T− v= 0). Now by choosing ψ = v in (4.5),

ψ = w in (4.6) and applying (4.7), we obtain

−
ˆ T

0

ˆ
Ω

b∇u ·∇vdxdt=
ˆ T

0

ˆ
Γ0

(u− h)wdSdt,

implying d
daJ1(a) =−

´ T
0 ∇u ·∇vdt. For the term J2, the directional derivative along b is

d
dε

∣∣∣∣
ε=0

ˆ
Ω

|∇(a+ εb)|dx=
ˆ
Ω

d
dε

∣∣∣∣
ε=0

(
|∇(a+ εb)|2

)1/2
dx

=

ˆ
Ω

(
|∇(a+ εb)|2

)− 1
2

∣∣∣
ε=0

∇a ·∇bdx=
ˆ
Ω

∇a
|∇a|

·∇bdx,

and hence we have d
daJ2(a) =−β∇· ( ∇a

|∇a| ).

By the chain rule, the derivatives of J with respect to a1, a2 and ϕ are given by

∂J
∂ϕ

=
dJ
da
∂a
∂ϕ

=
dJ
da

(a1 − a2)δ(ϕ),

∂J
∂a1

=

ˆ
Ω

dJ
da

∂a
∂a1

dx=
ˆ
Ω

dJ
da
H(ϕ)dx,

∂J
∂a2

=

ˆ
Ω

dJ
da

∂a
∂a2

dx=
ˆ
Ω

dJ
da

(1−H(ϕ))dx,

where δ is the Dirac delta function. Hence the iterative scheme for updating a1, a2 and
ϕ reads

ϕk+1 = ϕk− γk
∂J
∂ϕ

(ϕk,ak1,a
k
2) and ak+1

j = akj − γkj
∂J
∂aj

(ϕk+1,ak1,a
k
2), j = 1,2.

The step sizes γk and γkj can be either fixed or obtained by means of line search. The imple-
mentation of the method requires some care. First, we approximate the delta function δ(x) and
Heaviside function H(x) by

δε(x) =
ε

π (x2 + ε2)
and Hε(x) =

1
π
arctan

(x
ε

)
+

1
2
,

respectively, with ε> 0 of order of the mesh size [7, 9]. Second, during the iteration, the new
iterate ofϕmay fail to be a signed distance function. Although one is only interested in sign(ϕ),
it is undesirable for |ϕ| to get too large near the interface. Thus we reset ϕ to a signed distance
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function whenever ϕ changes by more than 10% in the relative L2(Ω)-norm. The resetting
procedure is to find the steady solution of the following equation [9, 42]:

∂td+ sign(d)(|∇d| − 1) = 0, with d(0) = ϕ.

5. Numerical experiments and discussions

Now we present numerical results for reconstructing the fractional order α and piecewise con-
stant diffusion coefficient a, with unknown u0 and f. In all experiments, the domain Ω is taken
to be the unit square Ω= (0,1)2, and the final time T = 1. We divide the domain Ω into uni-
form squares with a length h= 0.02 and then divide along the diagonals of each square. We
discretize the time interval [0,T] into uniform subintervals with a time step size τ = 0.01. All
direct and adjoint problems are solved by standard continuous piecewise linear Galerkin finite
element method in space and backward Euler convolution quadrature in time (see e.g. [23] and
[26, chapters 2 and 3]). Below we investigate the following four cases:

(i) D is a disc with radius 1
3 , centered at (

1
2 ,

1
2 ),

(ii) D is a square with length 1
2 , centered at (

1
2 ,

1
2 ),

(iii) D is a concave polygon, and
(iv) D is two discs with radius 1

5 , centered at ( 14 ,
1
2 ) and ( 34 ,

1
2 ), respectively.

Throughout, the unknown initial condition u0 and source f are fixed as

u0(x1,x2) = x21x
2
2(1− x1)

2(1− x2)
2 and f(x1,x2) = 1+ x1 + x2,

respectively. Meanwhile, we fix the exact fractional order α† = 0.8 and the diffusion coeffi-
cient a† = 10− 9χD, i.e. a1 = 1, a2 = 10. Unless otherwise stated, the Neumann excitation g
is taken as g(y, t) = η(y)χ[0.5,1](t), where η is the cosine function with a frequency 2π on each
edge for cases (i)–(iii) and is constant 1 for case (iv). We set g on ∂Ω× [0,T], and take the
measurement h on ∂Ω× [0,T].

First, we show the numerical recovery of the fractional order α for three different values,
i.e. 0.3, 0.5 and 0.8. In view of proposition 4.1, it suffices to fix one point y0 ∈ ∂Ω (which
is fixed at the origin y0 = (0,0) below) and to minimize problem (4.1), for which we use the
L-BFGS-B with constraint α ∈ [0,1] [4]. The recovered orders are presented in table 1. Note
that the least-squares functional has many local minima. Hence, the algorithm requires a good
initial guess to get a correct value for α. It is observed that the reconstruction is more accurate
when t0 → 0+, since the high order terms are then indeed negligible. Also, for a fixed interval
(0, t0), due to the asymptotic behavior, we have slightly better approximations when the true
order α is large. However, this does not influence much the reconstruction results for cases
(i)–(iv), since the coefficient a is constant near origin.

Now we apply analytic continuation to extend the observed data h by a rational function hr
from the interval [0,0.5] to [0,1], using the AAA algorithm [41] with degree r= 4. This step is
essential for dealing with missing data u0 and f : subtracting hr from h yields the reduced data
h for a given g and u0 = f≡ 0, which is then used in recovering a. Figure 2 shows the L2(∂Ω)
error between hr and the exact data h0 which is obtained by solving (1.1) with given g and
vanishing u0 and f. Note that higher order rational approximations can reduce the error over
the interval [0,0.5], but it tends to lead to larger errors in the interval [0.5,1]. The approach is
numerically sensitive to the presence of data noise, reflecting the well-known severe ill-posed
nature of analytic continuation.
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Table 1. The recovered order α based on least-squares fitting.

(a) case (i) (b)case (ii)

t0\α 0.3000 0.5000 0.8000 t0\α 0.3000 0.5000 0.8000

1×10−3 0.2402 0.5289 0.8353 1×10−3 0.2380 0.5243 0.8350
1×10−4 0.2516 0.5244 0.8795 1×10−4 0.2479 0.5239 0.8797
1×10−5 0.2649 0.4994 0.8006 1×10−5 0.2612 0.5022 0.7803
1×10−6 0.2712 0.4637 0.7978 1×10−6 0.2695 0.5182 0.7977
1×10−7 0.2665 0.5267 0.8019 1×10−7 0.2662 0.5279 0.8019
1×10−8 0.2558 0.4913 0.7989 1×10−8 0.2562 0.4914 0.7989
1×10−9 0.2744 0.4925 0.7999 1×10−9 0.2741 0.4925 0.7999

(c) case (iii) (b)case (iv)

t0\α 0.3000 0.5000 0.8000 t0\α 0.3000 0.5000 0.8000

1×10−3 0.2383 0.5214 0.8485 1×10−3 0.2384 0.5247 0.8436
1×10−4 0.2480 0.5198 0.8821 1×10−4 0.2486 0.5221 0.8816
1×10−5 0.2600 0.5098 0.8005 1×10−5 0.2617 0.5033 0.8005
1×10−6 0.2667 0.5213 0.7977 1×10−6 0.2692 0.5178 0.7977
1×10−7 0.2634 0.5273 0.8019 1×10−7 0.2650 0.5273 0.8019
1×10−8 0.2654 0.4913 0.7990 1×10−8 0.2703 0.4913 0.7989
1×10−9 0.2718 0.4925 0.7999 1×10−9 0.2740 0.4925 0.7999

Figure 2. The L2(∂Ω)-error between the analytic continuation hr and true data h0 for
cases (i)–(iv).

Finally, we present recovery results for the piecewise constant coefficient a, or equivalently,
the shapeD. The exact value is 1 inside the inclusionD and 10 outside, unless otherwise stated.
We use the standard gradient descent method to minimize problem (4.3). Unless otherwise
stated, we fix the step sizes γk ≡ 1, γk1 ≡ 0, γk2 ≡ 0, i.e. fixing the values inside and outside the
inclusion D. The regularization parameter β is chosen to be 10−8, and the coefficients a1 and
a2 are set to a1 = 0.9 and a2 = 10. The results are summarized in figures 3–9, where dashed
lines denote the recovered interfaces.

Figure 3 shows the result for case (i), when the initial guesses are a small circle but with two
different centers. In either case, the algorithm can successfully reconstruct the exact circle after
10 000 iterations. For case (ii), the exact interface is a square, again with the initial guess being
small circles inside the square, cf figure 4. The algorithm accurately recovers the four edges
of the square. However, due to the non-smoothness, the corners are much more challenging
to reconstruct and hence less accurately resolved. These results indicate that the method does
converge with a reasonable initial guess, but it may take many iterations to yield satisfactory
reconstructions. Figure 5 shows the results for case (iii) for which the exact interface is a
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Figure 3. The reconstructions of the interface for case (i) at iteration 0, 100 and 10000
from left to right, with two different initial guesses.

Figure 4. The reconstructions of the interface for case (ii) with different initial guesses
at iteration 0, 100 and 8000 from left to right.
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Figure 5. The reconstructions of the interface for case (iii) at iteration 0, 100 and 8000
from left to right.

Figure 6. The reconstructions of the interface for case (iii) at iteration 0, 1000 and
15 000 from left to right.

concave polygon, which is much more challenging to resolve. Nonetheless, the algorithm can
still recover the overall shape of the interface. The reconstruction around the concave part has
lower accuracy. To the best of our knowledge, the unique determination of a concave polygonal
inclusion (in an elliptic equation) is still open. Figure 6 shows the results for case (iv) which
contains two discs as the exact interface. The initial guess is two small discs near the boundary
∂Ω. Note that in this case, we choose the boundary data η ≡ 1 in order to strengthen the effect
of inhomogeneity. The final reconstruction is very satisfactory.

Figure 7 shows a variant of case (ii), with the initial interface being two disjoint discs. It is
observed that the two discs first merge into one concave contour, and then it evolves slowly
to resolve the square. This shows one distinct feature of the level set method, i.e. it allows
topological changes. Due to the complex evolution, the algorithm takes many more iterations
to reach convergence (i.e. 30 000 iterations versus 8000 iterations in case (ii)).

Figure 8 shows a case which aims at simultaneously recovering the interface and the diffus-
ivity value inside the inclusion, for which the exact interface is a square and the exact values
of a1 and a2 are 1 and 10, respectively. In the experiment, we take two different initial guesses.
The initial value of a1 for both cases is a1 = 1.2, and we take the step sizes γk ≡ 1, γk1 ≡ 10
and γk2 ≡ 0. The recovered value a1 is 0.92 for the first row and 0.89 for the second row. It is
observed that for both cases, one can roughly recover the interface. These experiments clearly
indicate that the level set method can accurately recover the interface D. However, it gener-
ally takes many iterations to obtain satisfactory results. This is attributed partly to topological
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Figure 7. The reconstruction of the interface for case (ii) with a different initial guess,
at different iterations 0, 100, 1000, 10 000, 20 000 and 30 000 (from left to right).

Figure 8. The reconstructions for case (ii) with a non-fixed diffusivity value a1. Left
column: initial guess. Right column: recovered interface.
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Figure 9. The reconstruction for case (iii) with noisy data and different boundary excit-
ations g1, g2 and g3 (from left to right). The top and bottom rows are for noise levels 1%
and 5%.

changes and the presence of nonsmooth points, and partly to the direct gradient flow formula-
tion. Indeed, one observes from proposition 4.2 that the gradient field for updating the level set
function is actually not very smooth, which hinders the rapid evolution of the interface. Hence,
there is an imperative need to accelerate the method, especially via suitable preconditioning
and post-processing [19].

Last, figure 9 shows reconstruction results with noisy data. Due to the instability of analytic
continuation for noisy data, we use boundary data corresponding to zero u0, f as our measure-
ment and only focus on reconstructing a. That is, we denote h∗ the solution of problem (1.1)
with u0 ≡ 0 and f≡ 0 which plays the role of h. The noisy measurement hδ is generated by

hδ(y, t) = h∗(y, t)+ ε∥h∗∥L∞(∂Ω×[0,1])ξ(y, t),

where ε> 0 denotes the relative noise level, and ξ follows the standard Gaussian distribution.
We take the exact interface as a concave polygon and the initial guess is a circle; see the left
panel in figure 5.We consider two different noise levels and three different input boundary data.
The first and second rows in figure 9 are for 1% and 5% noise, obtained with a regularization
parameter β = 1× 10−7 and β = 5× 10−7, respectively. We consider three input Neumann
data g1, g2 and g3: g1 = g (i.e. identical as before), and g2 and g3 are given by

g2(y, t) = η1(y)χ[0.25,1](t)+ η2(y)χ[0.5,1](t)+ η3(y)χ[0.75,1](t),

g3(y, t) = η1(y)χ[1/6,1](t)+ η2(y)χ[2/6,1](t)+ η3(y)χ[3/6,1](t)

+ η4(y)χ[4/6,1](t)+ η5(y)χ[5/6,1](t),

where ηn (n= 1, . . . ,5) is a cosine function with frequency 2nπ on each edge. The inputs
g2 and g3 contain higher frequency information and are designed to examine the influence
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of boundary excitation on the reconstruction. Figure 9 shows that with the knowledge of h∗,
the method for recovering the interface is largely stable with respect to the presence of data
noise. With more frequencies in the input excitation, the reconstruction results would improve
slightly. This agrees with the observation that the concave shape contains more high-frequency
information.

6. Concluding remarks

In this work have studied a challenging inverse problem of recovering multiple coefficients
from one single boundary measurement, in a partially unknown medium, due to the formal
under-determined nature of the problem.We have presented two uniqueness results, i.e. recov-
ering the order and the piecewise constant diffusion coefficient from a fairly general Neumann
input data and recovering the order and two distributed parameters from a fairly specialized
Neumann input data (in the appendix). For the former, we have also developed a practical
reconstruction algorithm based on asymptotic expansion, analytic continuation and level set
method, which is inspired by the uniqueness proof, and have presented extensive numerical
experiments to showcase the feasibility of the approach.

There remain many important issues to be resolved. Numerically, the overall algorithmic
pipeline works well for exact data. However, analytic continuation with rational functions is
sensitive with respect to the presence of data noise. Thus it is of much interest to develop
one-shot reconstruction algorithms. The main challenge lies in unknown medium properties,
i.e. missing data, which precludes a direct application of many standard regularization tech-
niques. It is of much interest to develop alternative approaches for problems with missing
data. The level set method does give excellent reconstructions, but it may take many iterations
to reach convergence. The acceleration of the method, e.g. via preconditioning, is imperat-
ive. Theoretically the specialized Neumann input is very powerful. However, the numerical
realization is very challenging. It would also be interesting to develop alternative numeric-
ally feasible yet more informative excitations for recovering more general coefficients than
polygonal inclusions.
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Appendix. Recovery of two general coefficients

In this appendix, we discuss the unique recovery of general coefficients mentioned in remark
3.3. In this setting, we have g ∈ C2(R+;H

1
2 (∂Ω)) with support in Γ1 ×R+. Moreover, g is

piecewise constant in time t and g≡ 0 when t⩽ T0, g is constant when t⩾ T1. The proof
relies on the representation of the data h, similar to corollary 2.1 and hence we omit the proof.
Note that g is a space-time dependent series. We may write h= hi+

∑∞
k=1 hb,k to distinguish

the contributions from u0 and f, and g (with gk(t) := χbkψk(t)ηk)

hi(t) := ρ0 + ρ1t
α +

∞∑
n=2

ρnEα,1(−λntα),

hb,k(t) :=
∞∑
n=1

mn∑
j=1

ˆ t

0
(t− s)α−1Eα,α(−λn(t− s)α)⟨gk(s),φn,j⟩dsφn,j.

Proposition A.1. For u0, f ∈ L2(Ω) and ηk ∈ H
1
2 (∂Ω), the data h= u|∂Ω×(0,T) to prob-

lem (1.1) can be represented by

h(t) = ρ0 + ρ1t
α +

∞∑
n=2

ρnEα,1(−λntα)

+
∞∑
n=1

mn∑
j=1

ˆ t

0
(t− s)α−1Eα,α(−λn(t− s)α)⟨g(s),φn,j⟩dsφn,j,

with ρn defined in (2.4). Moreover, the following statements hold.

(i) hi ∈ Cω(0,∞;L2(∂Ω)) and hb,k ∈ Cω(t2k+ ε,∞;L2(∂Ω)) with an arbitrarily fixed ε> 0.
(ii) The Laplace transforms ĥi(z) and ĥb,k(z) of hi and hb,k in t exist and are given by

ĥi(z) = ρ0z
−1 +Γ(1+α)ρ1z

−1−α +
∞∑
n=2

ρkzα−1

zα +λk
,

ĥb,k(z) =
∞∑
n=1

mn∑
j=1

⟨ĝk(z),φn,j⟩φn,j
zα +λn

.

Now we can state the main result of this part. First, we uniquely determine the fractional
order α using the data near t= T0, and then use the special boundary excitation g to determine
the coefficients a and q. The proof of part (i) is identical with that for theorem 3.1, and hence
omitted. The unique determination of a and q is proved below.

Theorem A.1. Let α,α̃ ∈ (0,1), (a,q, f,u0),(ã, q̃, f̃, ũ0) ∈ C2(Ω)×L∞(Ω)×L2(Ω)×L2(Ω)
and fix g as (3.6). Let h and h̃ be the corresponding Dirichlet data, and let σ ∈ (0,T0] be
fixed.

(i) The condition h= h̃ on Γ2 × [T0 −σ,T0] implies α= α̃, ρ0 = ρ̃0 and {(ρk,λk)}k∈K =

{(ρ̃k, λ̃k)}k∈K̃, if K,K̃ ̸= ∅.
(ii) If either of following conditions is satisfied: (a) q= q̃ and a− ã= |∇a−∇ã|= 0 on the

boundary ∂Ω or (b) a= ã, then the condition h= h̃ on Γ0 × [T0 −σ,T] implies (a,q) =
(ã, q̃).

In the proof of theorem A.1, we need the following two lemmas.
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Lemma A.1. The identity h= h̃ on Γ2 × [T0 −σ,T1] implies

hk = h̃k on Γ2 × [T0 −σ,∞), ∀k ∈ N, (A.1)

with hk = hi+ hb,k which solves problem (1.1) with g= gk.

Proof. We prove the assertion by induction. When k= 1, by the definition of ψk(t), we have
ψk = 0 in (0, t3) for all k⩾ 2. Then by proposition A.1, the condition h= h̃ onΓ2 × [T0 −σ,T1]
implies h1 = h̃1 on Γ2 × [T0 −σ, t3), since [T0 −σ, t3)⊂ [T0 −σ,T1]. By proposition A.1(i), h1
and h̃1 are L2(∂Ω)-valued functions analytic in t ∈ (t2 + ε,∞), and hence h1 = h̃1 for all t ∈
[T0 −σ,∞). This shows the case for k= 1. Now assume that for some ℓ ∈ N, the assertion (A.1)
holds for all k= 1, . . . , ℓ. Since ψk = 0 in (0, t2ℓ+3), for k≥ ℓ+ 2, we deduce

∑ℓ+1
k=1 hk = h in

Γ2 × (0, t2ℓ+3). Similarly, we have

ℓ+1∑
k=1

hk =
ℓ+1∑
k=1

h̃k on Γ2 × (0, t2ℓ+3).

From the induction hypothesis, we deduce hℓ+1 = h̃ℓ+1 on Γ2 × [T0 −σ, t2ℓ+3). Use analytic
continuation again, we obtain hℓ+1 = h̃ℓ+1 on Γ2 × [T0 −σ,∞). Thus, the assertion (A.1)
holds for all k ∈ N.

Lemma A.2. Given a nonempty open subset Γ of ∂Ω, for any fixed n ∈ N∗, the eigenfunctions
{φn,ℓ}mn

ℓ=1 corresponding to λn are linearly independent on L
2(Γ).

Proof. Suppose that on the contrary: there are {cj}mn
j=1 ⊂ R such that

∑mn

j=1 cjφn,j = 0 onΓ. Let
φ =

∑mn

j=1 cjφn, j. Then φ satisfies Aφ = λnφ in Ω, ∂νφ = 0 on ∂Ω, and φ = 0 on Γ. Then
the regularity on a and q and unique continuation principle [18, theorem 3.3.1] imply φ≡ 0 in
Ω. Since φn,j are linearly independent in L2(Ω), we obtain cj = 0, j = 1, . . . ,mn, i.e. the desired
linear independence.

Now we can state the proof of theorem A.1(ii).

Proof of theorem A.1(ii). By lemmaA.1, we have hk = h̃k on Γ2 × (T0 −σ,∞) for any k ∈ N.
Note that hk = hi+ hb,k solves problem (1.1) with g replaced by gk. We have the following
representations

hi(t) = ρ0 + ρ1t
α +

∑
n∈K∩N∗

ρnEα,1(−λntα),

hb,k(t) =
∞∑
n=1

mn∑
j=1

ˆ t

0
(t− s)α−1Eα,α(−λn(t− s)α)⟨gk(s),φn,j⟩dsφn,j.

By the choice of g, the interval [0,T] can be divided into [0,T0] and [T0,T]. For t ∈ (0,T0),
gk(t)≡ 0, theorem A.1(i) implies that {(ρℓ,λℓ)}ℓ∈K = {(ρ̃ℓ, λ̃ℓ)}ℓ∈K̃ and α= α̃, and hence

hi(t) = h̃i(t) for all t> 0. For t ∈ [T0,T], this and the condition hk(t) = h̃k(t) lead to hb,k(t) =
h̃b,k(t) in L2(Γ2). Thus,
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∞∑
n=1

mn∑
j=1

ˆ t

t1

(t− s)α−1Eα,α(−λn(t− s)α)⟨gk(s),φn,j⟩L2(Γ1) dsφn,j

=
∞∑
n=1

m̃n∑
j=1

ˆ t

t1

(t− s)α−1Eα,α(−λ̃n(t− s)α)⟨gk(s), φ̃n,j⟩L2(Γ1) ds φ̃n,j, t ∈ [t1,∞).

By proposition A.1(ii), applying Laplace transform on both sides yields

∞∑
n=1

mn∑
j=1

⟨ĝk(z),φn,j⟩φn,j
zα +λn

=
∞∑
n=1

m̃n∑
j=1

⟨ĝk(z), φ̃n,j⟩φ̃n,j
zα + λ̃n

, ∀ℜ(z)> 0. (A.2)

Next, we repeat the argument of theorems 3.1 and 3.2 to deduce λn = λ̃n, ∀n ∈ N. To this end,
let Uk ∈ Dom(A

1
4+ε) be the solution of the elliptic equation with a Neumann boundary data

χbkηk, for all ζ in any compact subset of C \ {−λn,−λ̃n}n∈N, we have∥∥∥∥∥∥
∞∑
n=1

mn∑
j=1

⟨ĝk(η
1
α ),φn,j⟩φn,j
ζ +λn

∥∥∥∥∥∥
2

Dom(A
1
4+ε)

⩽ c
∞∑
n=1

λ
1
2+2ε
n

mn∑
j=1

∣∣∣∣ ⟨χbkηk,φn,j⟩ζ +λn

∣∣∣∣2

= c
∞∑
n=1

λ
1
2+2ε
n

mn∑
j=1

∣∣∣∣λn (Uk,φn,j)

ζ +λn

∣∣∣∣2 ⩽ c∥Uk∥2
Dom(A

1
4+ε)

<∞.

Since each term of the series is a Dom(A
1
4+ε)-valued function analytic in ζ and the series

converges uniformly for ζ in a compact subset set of C \ {−λn,−λ̃n}n∈N, by the trace the-
orem, we deduce that both sides of (A.2) are L2(∂Ω)-valued functions analytic in ζ ∈ C \
{−λn,−λ̃n}n∈N. Assuming λj /∈ {λ̃n}n∈N, by choosing a small circle centered at−λj and then
using Cauchy integral formula, we obtain

2π
√
−1

λj

mn∑
j=1

⟨ĝk,φn,j⟩φn,j(y) = 0, ∀k ∈ N. (A.3)

This and lemma A.2 (with Γ = Γ2) imply ⟨ĝk,φn,j⟩= 0, ∀k ∈ N, j = 1, . . . ,mn. Since ĝk =
χbkψ̂ηk, by the density of ηk in H

1
2 (Γ1), we have φn,j = 0 a.e. on Γ1, j = 1, . . . ,mn. Since

∂νφn,j = 0, unique continuation principle [18, theorem 3.3.1] implies φn,j ≡ 0 in Ω, which is
a contradiction. Hence, λj ∈ {λ̃n}n∈N for every j ∈ N. Likewise, we can prove λ̃j ∈ {λn}n∈N

for every j ∈ N, and hence λn = λ̃n, ∀n ∈ N∗. It follows directly from (A.2) that

∞∑
n=1

1
η+λn

 mn∑
j=1

⟨ĝk(z),φn,j⟩φn,j(y)−
m̃n∑
j=1

⟨ĝk(z), φ̃n,j⟩φ̃n,j(y)

= 0, a.e. y ∈ Γ2.

Using Cauchy integral theorem again, we have

mn∑
j=1

⟨ĝk(z),φn,j⟩φn,j(y) =
m̃n∑
j=1

⟨ĝk(z), φ̃n,j⟩φ̃n,j(y), a.e. y ∈ Γ2, ∀k,n ∈ N.
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By the construction of gk, it is equivalent to

bkψk(z)
ˆ
∂Ω

χ(y′)ηk(y
′)Θn(y

′,y)dy′

= bkψk(z)
ˆ
∂Ω

χ(y′)ηk(y
′)Θ̃n(y

′,y)dy′, ∀n,k ∈ N, ℜ(z)> 0,

withΘn(y ′,y) :=
∑mn

j=1φn,j(y
′)φn,j(y). Since the set {ηk}k∈N is dense inH

1
2 (∂Ω) andχ≡ 1 on

Γ ′
1, we deduce Θn(y ′,y) = Θ̃n(y ′,y) ∈ L2(Γ ′

1)×L2(Γ2) for all n ∈ N. From [5, theorem 1.1]
(see also [30, lemma 4.1]), we deduce that mn = m̃n and after an orthogonal transformation

φn,j(y) = φ̃n,j(y), j = 1, · · · ,mn, ∀y ∈ ∂Ω, n ∈ N. (A.4)

By [6, corollary 1.7], the equal Dirichlet boundary spectral data (A.4) imply the desired
uniqueness
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