Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109209
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorCui, Jen_US
dc.creatorHong, Jen_US
dc.creatorJi, Len_US
dc.creatorSun, Len_US
dc.date.accessioned2024-09-24T04:20:52Z-
dc.date.available2024-09-24T04:20:52Z-
dc.identifier.urihttp://hdl.handle.net/10397/109209-
dc.language.isoenen_US
dc.publisherAIMS Pressen_US
dc.rightsOpen Access: Under a Creative Commons license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Jianbo Cui, Jialin Hong, Lihai Ji, Liying Sun. Strong convergence rate of an exponentially integrable scheme for stochastic nonlinear wave equation. Communications on Analysis and Computation, 2024, 2(3): 215-245 is available at https://doi.org/10.3934/cac.2024011.en_US
dc.subjectCubic nonlinearityen_US
dc.subjectEnergy evolution lawen_US
dc.subjectExponential integrability propertyen_US
dc.subjectSpectral Galerkin methoden_US
dc.subjectStochastic wave equationen_US
dc.subjectStrong convergenceen_US
dc.titleStrong convergence rate of an exponentially integrable scheme for stochastic nonlinear wave equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage215en_US
dc.identifier.epage245en_US
dc.identifier.volume2en_US
dc.identifier.issue3en_US
dc.identifier.doi10.3934/cac.2024011en_US
dcterms.abstractIn this paper, we present an exponentially integrable numerical method for stochastic wave equation with cubic nonlinearity and additive space-time noise. We first apply the spectral Galerkin method to discretize the original equation and show that this spatial discretization possesses an energy evolution law and certain exponential integrability property. Then the exponential integrability property of the exact solution is deduced by proving the strong convergence of the semi-discretization. To propose a fully discrete numerical method which could inherit both the energy evolution law and the exponential integrability, we use the splitting technique and averaged vector field method in the temporal direction. Combining these structure-preserving properties with regularity estimates of the exact and the numerical solutions, we obtain the strong convergence rate of the proposed scheme. Finally, numerical experiments verify the theoretical results.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications on analysis and computation, Sept 2024, v. 2, no. 3, p. 215-245en_US
dcterms.isPartOfCommunications on analysis and computationen_US
dcterms.issued2024-09-
dc.identifier.eissn2837-0562en_US
dc.description.validate202409 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; CAS AMSS-PolyU Joint Laboratory of Applied Mathematicsl; National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.TAAIMS (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.3934_cac.2024011.pdf4.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

19
Citations as of Nov 24, 2024

Downloads

13
Citations as of Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.