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Abstract. In this paper, we present an exponentially integrable numerical

method for stochastic wave equation with cubic nonlinearity and additive

space-time noise. We first apply the spectral Galerkin method to discretize
the original equation and show that this spatial discretization possesses an en-

ergy evolution law and certain exponential integrability property. Then the
exponential integrability property of the exact solution is deduced by proving

the strong convergence of the semi-discretization. To propose a fully discrete

numerical method which could inherit both the energy evolution law and the
exponential integrability, we use the splitting technique and averaged vector

field method in the temporal direction. Combining these structure-preserving

properties with regularity estimates of the exact and the numerical solutions,
we obtain the strong convergence rate of the proposed scheme. Finally, numer-

ical experiments verify the theoretical results.

1. Introduction. As a kind of commonly observed physical phenomena, the wave
motions are usually described by stochastic partial differential equations (SPDEs)
of hyperbolic type. The main objective of this paper is to numerically investigate
the following stochastic wave equation with cubic nonlinearity, driven by an additive
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noise 
du(t) = v(t)dt, in O × (0, T ],

dv(t) = Λu(t)dt− f(u(t))dt+ dW (t), in O × (0, T ],

u(0) = u0, v(0) = v0, in O,
(1)

where O = (0, 1)d with d ≤ 2, T ∈ (0,∞) and u0, v0 : O → R are deterministic

functions. Assume that Λ =
∑d
i=1

∂2

∂x2
i

is the Laplace operator with homogeneous

Dirichlet boundary condition, and the nonlinear term f(u) = c3u
3+c2u

2+c1u+c0 is
assumed to be a polynomial with c3 > 0 and c0, c1, c2 ∈ R. Throughout this paper,
W is an L2 := L2(O;R)-valued Q-Wiener process with respect to a filtered proba-
bility space (Ω,F , {Ft}t≥0,P), i.e., there exists an orthonormal basis {ek}k∈N+ of L2

and a sequence of mutually independent real-valued Brownian motions {βk}k∈N+

such that W (x, t) =
∑
k∈N+ Q

1
2 ek(x)βk(t) with Q being a self-adjoint, positive

definite and finite trace operator.
For the well-posedness of stochastic wave equation, we refer to [8, 9] for the

existence and uniqueness of the mild solution with more general polynomial drift
coefficients, and to [17] with more general driving noises. As an intrinsic quantity
of the wave equation, the evolution law of the energy holds,

V1(u(t), v(t)) =V1(u0, v0) +
1

2
Tr (Q) t+

∫ t

0

〈v(s), dW (s)〉L2 , a.s.

where 〈·, ·〉L2 denotes the L2-inner product and the energy V1 is defined in (8) (see
Lemma 2.3 for more details), has been established in [8]. Besides, by studying the
exponential moment of V1, the exponential integrability property of the solution
of the stochastic wave equation has been firstly shown in [1]. Further utilizing
the uniform exponential integrability property and regularity estimate of the spec-
tral Galerkin method applied to (1), we prove that the exact solution admits the
following exponential integrability property

E

(
exp

(∫ T

0

c‖u(s)‖2L6ds

))
≤ C,

where c ∈ R is arbitrary, T ∈ (0,∞), C := C(u0, v0,Q, T, c, d) and d ≤ 2.
The numerical resolution of the stochastic wave equation is a vibrant field of

research with many ongoing studies (for example, see [2, 5, 7, 11, 22, 21, 29, 25]
and the references cited therein). In the context of the stochastic wave equation
with cubic nonlinearity, the literature primarily mentions a unique partial-implicit
midpoint-type difference method, suitable for one-dimensional cases (d=1), which
maintains the energy functional in a dynamically consistent manner, as proposed in
[28]. From a numerical perspective, devising methods that preserve both the energy
evolution law and the exponential integrability property of the original system is
both natural and crucial. For example, in the realm of energy-preserving numerical
methods, we refer to the time splitting method applied to the stochastic nonlinear
Schrödinger equation [13], and the exponential integrator used for the stochastic
linear wave equation [10]. In terms of methods that ensure exponential integrability,
we note the explicit splitting scheme for the stochastic parabolic equation [4], the
stopped increment-tamed Euler approximations for stochastic differential equations
[20], and both the finite difference method and the splitting fully discrete scheme
for the stochastic nonlinear Schrödinger equation [14, 15].
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Despite these advancements, there remains a gap in the research for fully discrete
schemes that can simultaneously inherit the energy evolution law and exponential
integrability in the case of stochastic nonlinear wave equations with non-globally
Lipschitz coefficients. In the present paper, we propose a strategy to design nu-
merical methods preserving these two important properties. The idea is based on
splitting the original equation in temporal direction into a deterministic Hamilton-
ian system and a stochastic system. We combine the splitting technique with the
averaged vector field (AVF) method, and apply spectral Galerkin method in spatial
direction to present the following scheme

uNm+1 =uNm + h
vNm + v̄Nm+1

2
,

v̄Nm+1 =vNm + hΛN
uNm + uNm+1

2
− hPN

(∫ 1

0

f(uNm + θ(uNm+1 − uNm))dθ

)
,

vNm+1 =v̄Nm+1 + PNδWm,

where N ∈ N+ = {1, 2, · · · }, h = T/M with M ∈ N+ is the time step-size, m ∈
ZM := {0, 1, · · · ,M − 1}. Here PN is the spectral Galerkin projection operator
defined in (14), and δWm is the increment of the Wiener process defined in (27).

The averaged vector field method (AVF) can be viewed as a kind of the discrete
gradient approach to construct numerical schemes with conservation properties,
which has been discussed in the deterministic wave equation (see [18]). Furthermore,
we show that the proposed numerical method admits the following energy evolution
law

V1(uNm+1, v
N
m+1) =V1(uNm, v

N
m) +

∫ tm+1

tm

〈vN,Sm (s), PNdW (s)〉L2

+

∫ tm+1

tm

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
ds,

where vN,S is a auxiliary splitting process (we refer to (26) for details), and the
following exponential integrability property

E

(
exp

(
ch

M∑
i=1

‖uNi ‖2L6

))
≤ C,

where c ∈ R is arbitrary, C := C(u0, v0,Q, T, c, d) and d ≤ 2.

Let ‖(−Λ)
β−1
2 Q

1
2 ‖L2(L2) < ∞ with β ∈ [1, 2], where the index β quantifies

the spatial regularity of the Wiener process (see Propositions 3.2-3.3). Note that
we do not assume that Q commutes with A in the numerical analysis. Based on
the numerical exponential integrability and energy evolution law, we obtain the
following strong convergence result when X0 = (u0, v0)> ∈ Hβ , β ∈ [1, 2] (see
section 2 for the definition of the Sobolev interpolation space).

Theorem 1.1. Let d = 1, β ≥ 1 or d = 2, β = 2. Let γ = min (β, 2) and T > 0.

Assume that X0 ∈ Hβ , ‖(−Λ)
β−1
2 Q

1
2 ‖L2(L2) < ∞. For d = 1, there exists h0 > 0

such that for h ≤ h0 and p ≥ 1,

sup
m∈ZM+1

E
[
(‖u(tm)− uNm‖2L2 + ‖v(tm)− vNm‖2Ḣ−1)p

]
≤ C

(
hγp + λ−βpN

)
, (2)

where C = C(X0,Q, T, p) > 0, N ∈ N+,m ∈ ZM+1, M ∈ N+,Mh = T.
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When d = 2, it holds that

sup
m∈ZM+1

E
[
(‖u(tm)− uNm‖2L2 + ‖v(tm)− vNm‖2Ḣ−1)p

]
≤ C1

(
hγpλ2εp

N + λ−βpN

)
(3)

for sufficiently small ε > 0, where C1 = C1(p,X0,Q, T ) > 0, N ∈ N+, M ∈
N+,Mh = T.

To the best of our knowledge, this is the first result regarding both the exponential
integrability and the strong convergence rate of full discretizations for stochastic
wave equations with cubic nonlinearity.

The rest of this paper is organized as follows. Section 2 presents an abstract
formulation of the stochastic wave equation, and introduces some properties of the
corresponding group. In section 3, the regularity estimate and exponential inte-
grability property of the mild solution of the spectral Galerkin discretization are
studied. The analysis of strong convergence for the spectral Galerkin discretiza-
tion is also presented. Section 4 is devoted to constructing the numerical method
which preserves the energy evolution law and exponential integrability property,
and deducing its Lp(Ω;H) error estimate. Numerical experiments are carried out
in section 5 to verify theoretical results.

2. Preliminary and framework. In this section, we first set forth an abstract
formulation of (1) for the stochastic wave equation, and introduce some properties
of the unitary group generated by the dominant operator. Throughout this paper,
the constant C may be different from line to line but never depending on N and h.

Assume that the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · and that the correspond-
ing eigenfunctions {ei}∞i=1 of the operator −Λ, i.e., with −Λei = λiei, i ∈ N+,

form an orthonormal basis in L2. Define the interpolation space Ḣr := D((−Λ)
r
2 )

for r ∈ R equipped with the inner product 〈x, y〉Ḣr =
〈
(−Λ)

r
2 x, (−Λ)

r
2 y
〉
L2 =

∞∑
i=1

λri 〈x, ei〉L2〈y, ei〉L2 and the corresponding norm ‖x‖Ḣr := 〈x, x〉1/2Ḣr . Further-

more, we introduce the product space Hr := Ḣr×Ḣr−1, r ∈ R, endowed with the in-
ner product 〈X1, X2〉Hr = 〈x1, x2〉Ḣr +〈y1, y2〉Ḣr−1 for any X1 = (x1, y1)> and X2 =

(x2, y2)>, and the corresponding norm ‖X‖Hr := 〈X,X〉1/2Hr =
(
‖x‖2Ḣr +‖y‖2Ḣr−1

)1/2
for X = (x, y)>.

Given two separable Hilbert spaces (H, ‖ · ‖H) and (H̃, ‖ · ‖H̃), L(H, H̃) and

L1(H, H̃) are the Banach spaces of all linear bounded operators and the nuclear

operators from H to H̃, respectively. The trace of an nonnegative operator T ∈
L1(H) := L1(H,H) is Tr(T ) =

∑
k∈N+〈T fk, fk〉H, where {fk}k∈N+ is any orthonor-

mal basis of H. In particular, if T is a nonnegative operator, then Tr(T ) =

‖T ‖L1(H). Denote by L2(H, H̃) the space of Hilbert–Schmidt operators from H
into H̃, equipped with the norm ‖ ·‖L2(H,H̃) = (

∑
k∈N+ ‖ ·fk‖2H̃)

1
2 . For convenience,

we denote L2(H) := L2(H,H) and Lp := Lp(O,R), p ≥ 1.
Denote X = (u, v)>. The abstract form of (1) is

dX(t) = AX(t)dt+ F(X(t))dt+ GdW (t), t ∈ (0, T ],

X(0) = X0,
(4)

where

X0 =

[
u0

v0

]
, A =

[
0 I
Λ 0

]
, F(X(t)) =

[
0

−f(u(t))

]
, G =

[
0
I

]
.
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Here and below we denote I by the identity operator defined in L2. Moreover, we
define the domain of operator A by

D(A) =

{
X ∈ H : AX =

[
v

Λu

]
∈ H := L2 × Ḣ−1

}
,

then the operator A generates a unitary group E(t), t ∈ R, on H, given by

E(t) = exp(tA) =

[
C(t) (−Λ)−

1
2S(t)

−(−Λ)
1
2S(t) C(t)

]
,

where C(t) = cos(t(−Λ)
1
2 ) and S(t) = sin(t(−Λ)

1
2 ) are the cosine and sine opera-

tors, respectively.
Unless otherwise specified, throughout this article, we always assume that X0 ∈

H1 and Tr(Q) <∞. As a result, the mild solution of (4), that is,

X(t) = E(t)X0 +

∫ t

0

E(t− s)F(X(s))ds+

∫ t

0

E(t− s)GdW (s), a.s. (5)

exists. We refer to [8, 9] for the well-posedness of the mild solution for the stochastic
wave equation.

The following lemma concerns with the temporal Hölder continuity of both sine
and cosine operators.

Lemma 2.1. For r ∈ [0, 1], there exists a positive constant C ′ := C ′(r) such that

‖(S(t)− S(s))(−Λ)−
r
2 ‖L(L2) ≤ C ′(t− s)r,

‖(C(t)− C(s))(−Λ)−
r
2 ‖L(L2) ≤ C ′(t− s)r

for all t ≥ s ≥ 0.

The proof of Lemma 2.1 is analogous to that of [10, (4.1)] and thus is omitted
here. It indicates that

‖(E(t)− E(s))X‖H ≤ C ′(t− s)r‖X‖Hr

for r ∈ [0, 1].

Lemma 2.2. For all t ∈ R, C(t) and S(t) satisfy a trigonometric identity in the
sense that ‖S(t)x‖2L2 + ‖C(t)x‖2L2 = ‖x‖2L2 for any x ∈ L2.

The above lemma yields that for all t ∈ R,

‖E(t)X‖Hr = ‖X‖Hr for any X ∈ Hr, r ∈ R. (6)

Denote the smooth potential function by F (ξ) := c3
4 ξ

4 + c2
3 ξ

3 + c1
2 ξ

2 + c0ξ, ξ ∈ R.
Then the function F : R→ R satisfies

a1‖u‖4L4 − b1 ≤
∫
O
F (u(x))dx ≤ a2‖u‖4L4 + b2 (7)

for some positive constants a1, a2, b1, b2. We define the Lyapunov energy functional
V1 : H1 → R as

V1(u, v) =
1

2
‖u‖2Ḣ1 +

1

2
‖v‖2L2 +

∫
O
F (u(x))dx+ C1, C1 ≥ b1, (8)

then we have the following energy evolution law of (1) .
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Lemma 2.3. The stochastic wave equation (1) admits the energy evolution law

V1(u(t), v(t)) =V1(u0, v0) +
1

2
Tr (Q) t+

∫ t

0

〈v(s), dW (s)〉L2 , a.s. (9)

for all t ∈ R+. In particular, it possesses the averaged energy evolution law

E(V1(u(t), v(t))) =V1(u0, v0) +
1

2
Tr (Q) t

for all t ∈ R+.

The proof of the above lemma can be given by similar procedures in [8] by
using finite dimensional approximation, Itô’s formula and then taking limits. For
simplicity, we omit the details.

To derive the exponential integrability property of the exact and numerical so-
lution, we will frequently use the following Gagliardo–Nirenberg inequalities,

‖u‖L6 ≤ C‖∇u‖aL2‖u‖1−aL2 , with a =
d

3
, d ≤ 2, (10)

‖u‖L∞ ≤ ‖∇u‖
1
2

L2‖u‖
1
2

L2 , when d = 1, (11)

‖∇u‖L4 ≤ C‖Λu‖
1
2

L2‖∇u‖
1
2

L2 ,when d = 2, (12)

‖u‖L∞ ≤ C‖Λu‖
1
4

L2‖u‖
3
4

L6 ,when d = 2, (13)

and and the Sobolev embedding Ḣ1 ↪→ L∞ for d = 1 and Ḣ1 ↪→ Lq, q < ∞ for
d = 2. The main assumption for d ≤ 2 in this paper is due to the usage of the
above Gagliardo–Nirenberg equalities.

3. Exponential integrability property of stochastic wave equation. This
section is devoted to analyzing the spatial spectral Galerkin method of (4). We
present the existence, uniqueness and regularity estimate for the solution to the
spectral Galerkin discretization, including the uniform boundedness of the solution
in Lp(Ω; C([0, T ];Hβ))-norm and Hölder continuity of the solution in Lp(Ω;H)-norm.
By giving the strong convergence of the spectral Galerkin method, we show the
exponential integrability property of the exact solution of (1).

3.1. Spectral Galerkin method. In this subsection, we study the spectral Galerkin

method for stochastic wave equation (4). The spectral Galerkin method has been
used to discretize SPDEs in spatial direction (see e.g., [15, 21] and references
therein). For the considered equation and N ∈ N+, we define a finite dimen-
sional subspace UN of L2 spanned by {e1, e2, · · · , eN}, and the projection operator

PN : Ḣr → UN by

PNζ =

N∑
i=1

〈ζ, ei〉L2ei, ∀ ζ ∈ Ḣr, r ≥ −1, (14)

which satisfies ‖PN‖L(L2) ≤ 1. Define ΛN : UN → UN by

ΛNζ = ΛPNζ = PNΛζ = −
N∑
i=1

λi〈ζ, ei〉L2ei, ∀ ζ ∈ UN . (15)
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By denoting XN = (uN , vN )>, the spectral Galerkin method applied to (4) yields

dXN (t) = ANX
N (t)dt+ FN (XN (t))dt+ GNdW (t), t ∈ (0, T ],

XN (0) = XN
0 ,

(16)

where

XN
0 =

[
uN0
vN0

]
, AN =

[
0 I

ΛN 0

]
, FN (XN ) =

[
0

−PN
(
f(uN )

)] , GN =

[
0
PN

]
with uN0 = PNu0, v

N
0 = PNv0. Similarly, the discrete operator AN generates a

unitary group

EN (t) = exp(tAN ) =

[
CN (t) (−ΛN )−

1
2SN (t)

−(−ΛN )
1
2SN (t) CN (t)

]
, t ∈ R,

where CN (t) = cos(t(−ΛN )
1
2 ) and SN (t) = sin(t(−ΛN )

1
2 ) are the discrete cosine

and sine operators defined in UN , respectively. It can be verified straightforwardly
that

CN (t)PNζ = C(t)PNζ = PNC(t)ζ, SN (t)PNζ = S(t)PNζ = PNS(t)ζ

for any ζ ∈ Ḣr, r ≥ −1.
Thanks to the Lyapunov function V1 in (8), one can repeat the arguments in

the proof of [8, Theorem 4.2] and obtain the existence and uniqueness of the mild
solution of (16) and a priori estimate of XN (t). As a consequence, the energy
evolution law of XN (t) follows.

Lemma 3.1. Let T > 0. The spectral Galerkin discretization (16) has a unique
mild solution given by

XN (t) = EN (t)XN
0 +

∫ t

0

EN (t− s)FN (XN (s))ds+

∫ t

0

EN (t− s)GNdW (s) (17)

for t ∈ [0, T ]. Moreover, for p ≥ 2, there exists a positive constant C := C(X0, T,Q, p)

such that

sup
N∈N+

‖XN‖Lp(Ω;C([0,T ];H1)) ≤ C. (18)

Proposition 3.1. The mild solution XN (t) satisfies the energy evolution law

V1(uN (t), vN (t)) =V1(uN0 , v
N
0 ) +

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
t

+

∫ t

0

〈vN (s), dW (s)〉L2 , a.s. (19)

In particular, it admits the averaged energy evolution law

E(V1(uN (t), vN (t))) =V1(uN0 , v
N
0 ) +

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
t, t ∈ R+.

Due to the definition of PN and the assumption Tr(Q) <∞, it can be verified that

Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)

is uniformly bounded with respect to N for any N ∈ N+.
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3.2. Exponential integrability and regularity estimates of the spatial dis-
cretization. In this part, we show the exponential integrability property of XN .
In [12, Section 5.4], the authors first obtain the exponential integrability of spectral
Galerkin method of 2-dimensional stochastic wave equation driven by multiplicative
noise on a non-empty compact domain. We would like to remark that the expo-
nential integrability has been applied to study the large deviation principle and
the well-posedness of SPDEs, as well as the strong convergence of the stochastic
numerical scheme. For details, we refer to [3, 4, 13, 19] and references therein.

Lemma 3.2. Let T > 0. There exist a constant α ≥ Tr(Q) and a positive constant
C := C(X0, T,Q, α) such that

sup
s∈[0,T ]

E
[
exp

(
V1(uN (s), vN (s))

exp(αs)

)]
≤ C. (20)

Proof. Denote

(GAN+FN ,GN (V1))(u, v) :=〈DuV1(u, v), v〉L2 + 〈DvV1(u, v),Λu− f(u)〉L2

+
1

2

∞∑
i=1

〈DvvV1(u, v)PNQ
1
2 ei, PNQ

1
2 ei〉L2 .

Notice that DuV1(u, v) = f(u) − Λu, DvV1(u, v) = v and D2
vvV1(u, v) = I. Similar

to the estimates (5.43) in [12, Section 5.4], one has that

(GAN+FN ,GN (V1))
(
uN , vN

)
=〈f(uN )− ΛuN , vN 〉L2 + 〈vN , PN (ΛuN − f(uN ))〉L2 +

1

2
Tr(PNQ

1
2 (PNQ

1
2 )∗)

=
1

2
Tr(PNQ

1
2 (PNQ

1
2 )∗).

Then we get that for α > 0,

(GAN+FN ,GN (V1))
(
uN , vN

)
+

1

2 exp(αt)

∞∑
i=1

〈(PNQ
1
2 )∗vN , ei〉2L2

≤1

2
Tr(Q) +

1

2 exp(αt)

∞∑
i=1

〈vN ,Q 1
2 ei〉2L2 ≤

1

2
Tr(Q) +

1

exp(αt)
V1(uN , vN )Tr(Q).

Let Ū(s) = − 1
2Tr(Q), α ≥ Tr(Q). To sum up, we have verify the condition (27)

in [14, Lemma 3.1], i.e.,

(GAN+FN ,GN (V1))(u, v)+
1

2 exp(αt)

+∞∑
i=1

〈DvV1(u, v), (PNQ
1
2 )ei〉2+Ū(s) ≤ αV1(u, v),

for u, v ∈ PNH. Thus, we conclude that

E
[
exp

(
V1(uN (t), vN (t))

exp(αt)
+

∫ t

0

Ū(s)

exp(αs)
ds

)]
≤ exp(V1(uN0 , v

N
0 )),

which implies (20).

Corollary 3.1. Let d = 1, 2. For any c > 0, it holds that

sup
N∈N+

E
[

exp

(∫ T

0

c‖uN (s)‖2L6ds

)]
<∞.
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Proof. By applying Jensen’s inequality, we get

E[exp(

∫ T

0

c‖uN (s)‖2L6ds)] ≤ E[

∫ T

0

1

T
exp(cT‖uN (s)‖2L6)ds]

≤ 1

T

∫ T

0

sup
s∈[0,T ]

E[exp(cT‖uN (s)‖2L6)]ds ≤ sup
t∈[0,T ]

E[exp(cT‖uN (t)‖2L6)].

Based on the Gagliardo–Nirenberg inequality (10) with a = d
3 , we have that

E

[
exp

(∫ T

0

c‖uN (s)‖2L6ds

))
≤ sup
t∈[0,T ]

E
[
exp(cCT‖∇uN (t)‖2aL2‖uN (t)‖2−2a

L2 )
]

≤ sup
t∈[0,T ]

E
[
exp

(
‖∇uN (t)‖2L2

2 exp(αt)

)
exp

(
exp(

a

1− a
αT )‖uN (t)‖2L2(cCT )

1
1−a 2

a
1−a

)]
.

In the last step, we have used the Young inequality

|u||v| ≤ |u|
1
a

2 exp(αt) +(2 exp(αt))
a

1−a |v|
1

1−a . Then the Hölder and the Young inequalities

imply that for some small ε > 0,

E
[
exp

(∫ T

0

c‖uN (s)‖2L6ds

)]
≤ sup

t∈[0,T ]

E
[
exp

(
‖∇uN (t)‖2L2

2 exp(αt)

)
exp

(
ε‖uN (t)‖4L2 +

1

4ε
exp(2

a

1− aαT )(cCT )
2

1−a 4
a

1−a
)]

≤ C(ε, d) sup
t∈[0,T ]

E
[
exp

(
‖∇uN (t)‖2L2

2 exp(αt)

)
exp(ε‖uN (t)‖4L4)

]
.

Then using (7) and the definition (8) and taking ε ≤ a1e
−αT , we get

E

[
exp

(∫ T

0

c‖uN (s)‖2L6ds

)]

≤C(ε, d) sup
t∈[0,T ]

E
[
exp

(
‖∇uN (t)‖2L2

2 exp(αt)

)
exp

(
ε

∫
O F (u(x))dx

a1
+
b1
a1

)]
≤C(ε, d) sup

t∈[0,T ]

E
[
exp

(
V1(uN (t), vN (t))

exp(αt)

)]
.

Applying Lemma 3.2, we complete the proof.

Note that when d = 1, using the Gagliardo–Nirenberg inequality (11), one can

obtain that for any c > 0, sup
N∈N+

E
[
exp

(∫ T
0
c‖uN (s)‖2L∞ds

)]
<∞.

Now we show the higher regularity estimate of the solution of (16) in two different
cases, i.e., the case d = 1 in Proposition 3.2 and the case d = 2 in Proposition 3.3.
The main reason is due to the fact that in the case d = 1, one can use the Gagliardo–
Nirenberg inequality (11).

Proposition 3.2. Let p ≥ 1, d = 1, β ∈ [1, 2], ‖(−Λ)
β−1
2 Q

1
2 ‖L2(L2) < ∞, T > 0

and X0 ∈ Hβ. Then the mild solution of (16) satisfies

sup
N∈N
‖XN‖Lp(Ω;C([0,T ];Hβ)) ≤ C(X0, T,Q, p).
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Proof. For the stochastic convolution, using the unitary property (6) of EN (·) and
then applying the Burkholder–Davis–Gundy inequality, we have

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

EN (t− s)GNdW (s)

∥∥∥∥p
Hβ

≤ E sup
t∈[0,T ]

‖EN (t)‖L(Hβ) sup
t∈[0,T ]

∥∥∥∥∫ t

0

EN (s)GNdW (s)

∥∥∥∥p
Hβ

≤ C

(∫ T

0

‖(−Λ)
β−1
2 Q

1
2 ‖2L2(L2)ds

) p
2

≤ C.

Now it suffices to estimate ‖
∫ t

0
EN (t− s)FN (XN (s))ds‖Lp(Ω;C([0,T ];Hβ)). Since

EN (t− s)FN (XN (s)) =

[
−(−Λ)−

1
2S(t− s)PN (f(uN (s)))

−C(t− s)PN (f(uN (s)))

]
,

it suffices to estimate E
[

sup
t∈[0,T ]

(
∫ t

0
‖(−Λ)

β−1
2 PN (f(uN (s)))‖L2ds)p

]
. Now we first

consider the case of β ∈ [1, 2). Using the Sobolev embedding Ḣ1 ↪→ L∞ and the
argument in the proof of [16, Lemma 4], i.e.,

‖f(uN (s))‖Ḣβ−1 ≤ C(1 + ‖uN (s)‖3L∞ + ‖uN (s)‖3Ḣβ−1),

we have∫ t

0

∥∥∥(−Λ)
β−1
2 PN (f(uN (s)))

∥∥∥
L2
ds ≤ C

∫ t

0

(1 + ‖uN (s)‖3Ḣ1 + ‖uN (s)‖3Ḣβ−1)ds.

Based on the Hölder inequality and the Young inequality, we obtain

E sup
t∈[0,T ]

(∫ t

0

‖(−Λ)
β−1
2 PN (f(uN (s)))‖L2ds

)p
≤CE

∫ T

0

(1 + ‖uN (s)‖Ḣ1 + ‖uN (s)‖Ḣβ−1)3pds

≤C + C

∫ T

0

E(1 + ‖uN (s)‖3pḢ1
)ds+ C

∫ T

0

E‖uN (s)‖3pḢβ−1
ds,

which, together with Lemma 3.1 shows the desired result for the case β ∈ [1, 2).
With regard to the case that β = 2, we can use the verified result in the case
β ∈ [1, 2) and the fact that

‖f(uN (s))‖Ḣ1 ≤ C(1 + ‖uN (s)‖3Ḣ1+ε)

for any small ε ∈ (0, 1). We omit further tedious details.

The following regularity estimate of XN is for the case d = 2. Compared to
Proposition 3.2, one needs to use the Sobolev embedding theorem in 2d to deal
with the cubic nonlinearity.

Proposition 3.3. Let d = 2, T > 0, X0 ∈ H2 and ‖(−Λ)
1
2Q

1
2 ‖L2(L2) < ∞. Then

for any p ≥ 2, there exists a positive constant C := C(X0,Q, T, p) such that

sup
N∈N
‖XN‖Lp(Ω;C([0,T ];H2)) ≤ C(X0,Q, T, p). (21)
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Proof. We only present the proof for p = 2 here, since the proof for general p > 2
is similar. Similar to the proof of Proposition 3.2, it only suffices to get a uniform
bound of XN under the C([0, T ];L2(Ω;H2))-norm. We introduce another Lyapunov
functional

V2(uN , vN ) =
1

2

∥∥ΛuN
∥∥2

L2 +
1

2

∥∥∇vN∥∥2

L2 +
1

2
〈(−Λ)uN , f(uN )〉L2 .

By applying the Itô’s formula to V2 and the commutativity between Λ and PN , we
get

dV2(uN (t), vN (t)) (22)

=I1(t)dt+ 〈∇vN (t),∇PNdW (t)〉L2 +
1

2
Tr
(

(∇PNQ
1
2 )(∇PNQ

1
2 )∗
)
dt,

where

I1(t) =
1

2
〈∇uN (t), D2f(uN (t))∇uN (t)vN (t)〉L2 .

Making use of the Hölder inequality and the Gagliardo–Nirenberg inequality (12),
we have

I1(t) ≤C‖∇uN (t)‖2L4(1 + ‖uN (t)‖L∞)‖vN‖L2

≤C‖ΛuN (t)‖L2‖∇uN (t)‖L2(1 + ‖uN (t)‖L∞)‖vN (t)‖L2 .

By further applying the Gagliardo–Nirenberg inequality (13) and using the Young
inequality, we get

I1(t) ≤ C‖ΛuN (t)‖L2‖∇uN (t)‖L2(1 + ‖ΛuN (t)‖
1
4

L2‖uN (t)‖
3
4

L6)‖vN (t)‖L2

≤ C
(
‖∇uN (t)‖2L2‖vN (t)‖2L2 + ‖∇uN (t)‖

8
3

L2‖vN (t)‖
8
3

L2‖uN (t)‖2L6 + ‖ΛuN (t)‖2L2

)
.

On the other hand, using the Cauchy–Schwarz inequality and the Young inequality
and the fact that Ḣ1 ↪→ L6, we deduce that∣∣〈(−Λ)uN (t), f(uN (t))〉L2

∣∣ ≤ ‖(−Λ)uN (t)‖L2‖f(uN (t))‖L2

≤1

2
‖ΛuN (t)‖2L2 +

C̃1(c0, c1, c2, c3)

2
‖uN (t)‖6L6 + C̃2(c0, c1, c2, c3)

≤1

2
‖ΛuN (t)‖2L2 +

C̃1(c0, c1, c2, c3, d)

2
‖uN (t)‖6Ḣ1 + C̃2(c0, c1, c2, c3).

The above inequality leads to V2(uN , vN ) ≥ 1
4‖Λu

N‖2L2 − C̃1

4 ‖u
N‖6Ḣ1 − 1

2 C̃2. Thus,

by Young’s inequality and the fact that Ḣ1 ↪→ L6, we obtain that

I1(t) ≤ C
(
‖∇uN (t)‖2L2‖vN (t)‖2L2 + ‖∇uN (t)‖

8
3

L2‖vN (t)‖
8
3

L2‖uN (t)‖2L6 + ‖ΛuN (t)‖2L2

)
≤ C

(
‖uN (t)‖4Ḣ1 + ‖vN (t)‖4L2 + ‖uN (t)‖

14
3

Ḣ1 ‖v
N (t)‖

8
3

L2 + ‖ΛuN (t)‖2L2

)
≤ C

(
‖uN (t)‖4Ḣ1 + ‖vN (t)‖4L2 + ‖uN (t)‖6Ḣ1 + ‖vN (t)‖12L2 + ‖ΛuN (t)‖2L2

)
≤ C(1 + V2(uN (t), vN (t)) + ‖uN (t)‖6Ḣ1 + ‖vN (t)‖12L2).

Taking expectation on (22), using the above estimates of I1 and V2, it follows
that

dEV2(uN (t), vN (t))

= EI1(t)dt+
1

2
Tr
(

(∇PNQ
1
2 )(∇PNQ

1
2 )∗
)
dt
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≤ C
(
V2(uN (t), vN (t)) + ‖uN (t)‖6Ḣ1 + ‖vN (t)‖12

L2 + 1
)
dt

+
1

2
Tr
(

(∇PNQ
1
2 )(∇PNQ

1
2 )∗
)
dt.

By using the inverse equality ‖uN‖Ḣ2 ≤ CλN‖uN‖L2 and the integrability of uN in
H1 in (18), one could obtain the integrability of V2 and other terms on the right
hand side of the above equality. Taking the expectation on both sides and applying
the Gronwall inequality, we have

EV2(uN (t), vN (t)) ≤C exp (Ct)
(
‖X0‖2H2 +

1

2
Tr
(

(∇PNQ
1
2 )(∇PNQ

1
2 )∗
)
t

+

∫ t

0

E(1 + ‖vN (s)‖12
L2 + ‖uN (s)‖6Ḣ1)ds

)
,

which, combined with Lemma 3.1, shows the desired result.

Next we derive the Hölder continuity in temporal direction for the numerical
solution {uN}N∈N and {XN}N∈N with respect to Lp(Ω;L2)-norm and Lp(Ω;H)-
norm, respectively. Both results play a key role in our error analysis in Section
4.

Lemma 3.3. Assume that conditions in Lemma 3.1 hold. Then there exists C :=
C(X0,Q, T, p) > 0 such that for any 0 ≤ s ≤ t ≤ T ,

sup
N∈N
‖uN (t)− uN (s)‖Lp(Ω;L2) ≤ C|t− s|, sup

N∈N
‖XN (t)−XN (s)‖Lp(Ω;H) ≤ C|t− s|

1
2 .

Proof. From (16), we have

uN (t)− uN (s) =(CN (t)− CN (s))PN (u0) + (−ΛN )−
1
2 (SN (t)− SN (s))PN (v0)

−
∫ s

0

(−ΛN )−
1
2 (SN (t− r)− SN (s− r))PN (f(uN ))dr

−
∫ t

s

(−ΛN )−
1
2SN (t− r)PN (f(uN ))dr

+

∫ s

0

(−ΛN )−
1
2 (SN (t− r)− SN (s− r))PNdW (r)

+

∫ t

s

(−ΛN )−
1
2SN (t− r)PNdW (r).

Using the properties of CN (t) and SN (t) in Lemma 2.1 and the Burkholder–Davis–
Gundy inequality, as well as the Sobolev embedding theorem, gives

‖uN (t)− uN (s)‖Lp(Ω;L2)

≤ C|t− s|
(
‖u0‖Lp(Ω;Ḣ1) + ‖v0‖Lp(Ω;L2)

)
+ C

∫ s

0

(t− s)‖f(uN )‖Lp(Ω;L2)ds+ C

∫ t

s

‖f(uN )‖Lp(Ω;Ḣ−1)ds

+

(∫ s

0

‖(−ΛN )−
1
2 (SN (t− r)− SN (s− r))PNQ

1
2 ‖2L2(L2)dr

) 1
2

+

(∫ t

s

‖(−ΛN )−
1
2SN (t− r)PNQ

1
2 ‖2L2(L2)dr

) 1
2
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≤ C|t− s|
(

1 + ‖u0‖Lp(Ω;Ḣ1) + ‖v0‖Lp(Ω;L2) + sup
0≤t≤T

‖uN (t)‖3
L3p(Ω;Ḣ1)

)
≤ C|t− s|,

which is the claim for uN . To obtain the estimate of XN , it suffices to deal with
vN (t)− vN (s). Using the mild formulation of vN ,

vN (t)− vN (s)

=−
(

(−ΛN )
1
2SN (t)− (−ΛN )

1
2SN (s)

)
PN (u0) + (CN (t)− CN (s))PN (v0)

−
∫ s

0

(CN (t− r)− CN (s− r))PN (f(uN ))dr

−
∫ t

s

CN (t− r)PN (f(uN ))dr

+

∫ s

0

(CN (t− r)− CN (s− r))PNdW (r)

+

∫ t

s

CN (t− r)PNdW (r).

Using again the properties of CN (t) and SN (t) in Lemma 2.1 and the Burkholder–
Davis–Gundy inequality, as well as the Sobolev embedding theorem, gives

‖vN (t)− vN (s)‖Lp(Ω;Ḣ−1)

≤ C|t− s|
(
‖u0‖Lp(Ω;Ḣ1) + ‖v0‖Lp(Ω;L2)

)
+ C

∫ s

0

(t− s)‖f(uN )‖Lp(Ω;L2)ds+ C

∫ t

s

‖f(uN )‖Lp(Ω;Ḣ−1)ds

+

(∫ s

0

‖(−ΛN )−
1
2 (CN (t− r)− CN (s− r))PNQ

1
2 ‖2L2(L2)dr

) 1
2

+

(∫ t

s

‖(−ΛN )−
1
2CN (t− r)PNQ

1
2 ‖2L2(L2)dr

) 1
2

≤ C|t− s| 12
(

1 + ‖u0‖Lp(Ω;Ḣ1) + ‖v0‖Lp(Ω;L2) + sup
0≤t≤T

‖uN (t)‖3
L3p(Ω;Ḣ1)

)
≤ C|t− s| 12 ,

which completes the proof.

3.3. Exponential integrability of stochastic wave equation. In this part, we
first prove that the spectral Galerkin approximation XN converges to the solution
of (4) in strong sense based on Lemma 3.2.

Proposition 3.4. Assume that d = 1, β ≥ 1 (or d = 2, β = 2), X0 ∈ Hβ , T > 0

and ‖(−Λ)
β−1
2 Q

1
2 ‖L2(L2)<∞. Then for any p ≥ 2, (16) satisfies that

‖XN −X‖Lp(Ω;C([0,T ];H)) = O(λ
− β2
N ).

Proof. For the sake of simplicity, we take the first component of XN as an example
to illustrate the desired result.
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Step 1: Strong convergence and limit of uN . We claim that {uN}N∈N+ is a
Cauchy sequence in Lp(Ω; C([0, T ];L2)). Notice that

uN (t)− uN
′
(t) =

(
uN (t)− PNuN

′
(t)
)

+
(

(PN − I)uN
′
(t)
)
,

where N,N ′ ∈ N+. Without loss of generality, it may be assumed that N ′ > N.
According to the expression of both uN and uN

′
, using the definition of PN , we

have

‖(PN − I)uN
′
(t)‖2L2 =

∞∑
i=N+1

λ−βi 〈u
N ′(t), λ

β
2
i ei〉

2
L2 ≤ λ−βN ‖u

N ′(t)‖2Ḣβ

with β ≥ 1. With respect to the term uN (t)− PNuN
′
(t), we have

uN (t)− PNuN
′
(t) =

∫ t

0

(−Λ)−
1
2S(t− s)PN

(
f(uN

′
(s))− f(uN (s))

)
ds.

From the Sobolev embedding L
6
5 ↪→ Ḣ−1, using the Hölder inequality with the

exponent 1
3 + 1

2 = 5
6 , we obtain that

‖uN (t)− PNuN
′
(t)‖L2

≤
∫ t

0

∥∥∥(−Λ)−
1
2S(t− s)PN

(
f(uN

′
(s))− f(uN (s))

)∥∥∥
L2
ds

≤ C
∫ t

0

∥∥∥(1 + |uN (s)|2 + |uN
′
(s)|2

)(
uN (s)− uN

′
(s)
)∥∥∥

L
6
5
ds

≤ C
∫ t

0

(1 + ‖uN (s)‖2L6 + ‖uN
′
(s)‖2L6)(

‖uN (s)− PNuN
′
(s)‖L2 + ‖(PN − I)uN

′
(s)‖L2

)
ds,

which implies

‖uN (t)− PNu
N′(t)‖L2

≤Cλ−
β
2

N exp

(
C

∫ T

0

(
‖uN (s)‖2L6 + ‖uN′(s)‖2L6

)
ds

)∫ t

0

(1 + ‖uN (s)‖2L6 + ‖uN′(s)‖2L6)

× ‖uN′(s)‖Ḣβds

due to the Gronwall’s inequality. Taking the pth moment and then using the Hölder
and the Young inequalities, and the exponential moment bounds given in Corollary
3.1, we obtain

‖uN − uN
′
‖Lp(Ω;C([0,T ];L2))

≤Cλ−
β
2

N

∥∥∥ exp

(∫ T

0

(
‖uN (s)‖2L6 + ‖uN

′
(s)‖2L6

)
ds

)∥∥∥
L2p(Ω;R)

×
∥∥∥∫ T

0

(1 + ‖uN (s)‖2L6 + ‖uN
′
(s)‖2L6)‖uN

′
‖Ḣβds

∥∥∥
L2p(Ω;R)

+ λ
− β2
N ‖u

N ′(s)‖Lp(Ω;C([0,T ];Ḣβ)),

which leads to

‖uN − uN
′
‖Lp(Ω;C([0,T ];L2)) ≤ Cλ

− β2
N . (23)
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Similarly, we can prove that {vN}N∈N+ is a Cauchy sequence in Lp(Ω; C([0, T ]; Ḣ−1))
which means that {XN}N∈N+ is a Cauchy sequence in Lp(Ω; C([0, T ];H)). Indeed,
we can first decompose

vN (t)− vN
′
(t) =

(
vN (t)− PNvN

′
(t)
)

+
(

(PN − I)vN
′
(t)
)
,

where ‖(PN −I)vN
′
(t)‖Lp(Ω;Ḣ−1) ≤ Cλ

β
2

N due to vN
′ ∈ Ḣβ−1 in (18) and (21). Then

applying the Sobolev embedding L
6
5 ↪→ Ḣ−1 and Hölder’s inequality again, we get

‖vN (t)− PNv
N′(t)‖Ḣ−1

= ‖
∫ t

0

CN (t− s)
(
f(uN′(s))− f(uN (s))

)
ds‖Ḣ−1

≤ C
∫ t

0

(1 + ‖uN (s)‖2L6 + ‖uN′(s)‖2L6)
(
‖uN (s)− PNu

N′(s)‖L2 + ‖(PN − I)uN′(s)‖L2

)
ds.

We omit further tedious details for applying Gronwall’s arguments.
Step 2: Existence and uniqueness of the mild solution.
Denote by X = (u, v)> ∈ H the limit of {XN}N∈N+ . To show that the strong

limit X is the mild solution of (1), it suffices to prove that

X(t) = E(t)X0 +

∫ t

0

E(t− s)F(X(s))ds+

∫ t

0

E(t− s)GdW (s) (24)

for any t ∈ [0, T ]. We take the convergence of {uN}N∈N+ as an example to illustrate
the details, that is, to show that u satisfies

u(t) = C(t)u0 + (−Λ)−
1
2S(t)v0 −

∫ t

0

(−Λ)−
1
2S(t− s)f(u(s))ds

+

∫ t

0

(−Λ)−
1
2S(t− s)dW (s).

To this end, we show that the mild form of the exact solution uN is convergent to
that of u. The assumption on X0 yields that

‖C(t)(I − PN )u0‖L2 + ‖(−Λ)−
1
2S(t)(I − PN )v0‖L2 ≤ Cλ−

β
2

N (‖u0‖Ḣβ + ‖v0‖Ḣβ−1).

Notice that by Sobolev embedding theorem, it holds that for d = 1, β ≥ 1,

‖(I − PN )

∫ t

0

(−Λ)−
1
2S(t− s)f(u(s))ds‖L2 ≤ Cλ−

β
2

N

∫ t

0

‖f(u(s))‖Ḣβ−1ds

≤ Cλ−
β
2

N

∫ t

0

(1 + ‖u(s)‖3Ḣ1)ds,

and for d = 2, β = 2,

‖(I − PN )

∫ t

0

(−Λ)−
1
2S(t− s)f(u(s))ds‖L2 ≤ Cλ−

β
2

N

∫ t

0

(1 + ‖u(s)‖3Ḣ1+ε)ds,

where ε ∈ (0, 1) is small. Thanks to Propositions 3.2 and 3.3, the above term is

convergent. Based on the Sobolev embedding L
6
5 ↪→ Ḣ−1 and (23), we have∥∥∥∥∫ t

0

(−Λ)−
1
2S(t− s)PN

(
f(u(s))− f(uN (s))

)
ds

∥∥∥∥
Lp(Ω;C([0,T ];L2))

≤ C
∫ T

0

‖(1 + ‖u(s)‖2L6 + ‖uN (s)‖2L6)‖L2p(Ω;R)‖u(s)− uN (s)‖L2p(Ω;L2)ds
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≤ Cλ−
β
2

N .

For the stochastic term, by using the fact that S(t − s) = S(t)C(s) − C(t)S(s),
the boundedness of C(·) and S(·), and the Burkholder–Davis–Gundy inequality we
obtain that for p ≥ 2,

‖
∫ t

0

(−Λ)−
1
2S(t− s)(I − PN )dW (s)‖Lp(Ω;C([0,T ];L2))

≤ C‖
∫ t

0

(−Λ)−
1
2C(s)(I − PN )dW (s)‖Lp(Ω;C([0,T ];L2))

+ C‖
∫ t

0

(−Λ)−
1
2S(s)(I − PN )dW (s)‖Lp(Ω;C([0,T ];L2))

≤ C

√∫ t

0

‖(I − PN )(−Λ)−
β
2 (−Λ)−

1
2 + β

2 Q
1
2 ‖2L2(L2)ds ≤ Cλ

− β2
N .

Next, we use analogous steps to deal with the convergence of vN , i.e., to verify that
the limit v satisfies

v(t) = − (−Λ)−
1
2S(t)u0 + C(t)v0 −

∫ t

0

C(t− s)f(u(s))ds

+

∫ t

0

C(t− s)dW (s).

The convergence of −(−Λ)−
1
2S(t)uN0 to −(−Λ)−

1
2S(t)u0 and that of C(t)vN0 to

C(t)v0 is straightforward. The convergence of ‖
∫ t

0
C(t − s)(I − PN )dW (s)‖Ḣ−1 is

similar to that of ‖
∫ t

0
(−Λ)−

1
2 (−Λ)−

1
2S(t − s)(I − PN )dW (s)‖L2 due to the fact

that C(t− s) = C(t)C(s)− S(t)S(s). It remains to show that∫ t

0

C(t− s)PNf(uN (s))ds→
∫ t

0

C(t− s)f(u(s))ds, a.s. N →∞.

Notice that by Sobolev embedding theorem, it holds that for d = 1, β ≥ 1,

‖(I − PN )

∫ t

0

C(t− s)f(u(s))ds‖Ḣ−1 ≤ Cλ
− β2
N

∫ t

0

(1 + ‖u(s)‖3Ḣ1)ds,

and for d = 2, β = 2,

‖(I − PN )

∫ t

0

C(t− s)f(u(s))ds‖Ḣ−1 ≤ Cλ
− β2
N

∫ t

0

(1 + ‖u(s)‖3Ḣ1+ε)ds,

where ε ∈ (0, 1) is small. To verify the convergence of the term∥∥∥∥∫ t

0

C(t− s)PN
(
f(u(s))− f(uN (s))

)
ds

∥∥∥∥
Lp(Ω;C([0,T ];Ḣ−1))

,

we need repeat the procedures in the convergence proof of u and thus omit further
tedious details.

Combining the above properties of v and u, we complete the proof.

From the proof of Proposition 3.4, we have the following exponential integrability
property of the exact solution.
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Proposition 3.5. Let d = 1, 2. For any c ∈ R and T > 0, it holds that

E

(
exp

(∫ T

0

c‖u(s)‖2L6ds

))
<∞.

Proof. Due to Propositions 3.2-3.3 and Fatou’s lemma, we have E[‖X‖pC([0,T ];H1)] ≤
C(X0,Q, T, p). From the Gagliardo–Nirenberg inequality (10) and the bounded-
ness of X and XN in Lp(Ω; C([0, T ];H1)), it follows that uN converges to u in
Lp(Ω; C([0, T ];L6)). By Jensen’s inequality and Fatou’s lemma, we have

E

(
exp

(∫ T

0

c‖u(s)‖2L6ds

))
≤ 1

T

∫ T

0

E exp
(
cT‖u(s)‖2L6

)
ds

≤ lim
N→∞

1

T

∫ T

0

E exp
(
cT‖uN (s)‖2L6

)
ds.

Then by applying Corollary 3.1, it holds that for any constant c > 0,

E

(
exp

(∫ T

0

c‖u(s)‖2L6ds

))
<∞.

4. An exponentially integrable fully discrete method. The stochastic wave
equation with Lipschitz and regular coefficients has been systematically investigated
theoretically and numerically (see e.g., [17, 23, 27] and references therein). How-
ever, as far as we know, for stochastic wave equations with non-globally Lipschitz
coefficients, there are no results about the fully discrete method preserving both
the energy evolution law and the exponential integrability property and the re-
lated strong convergence analysis. In this section, we propose an energy-preserving
exponentially integrable fully discrete method for stochastic wave equation (1) by
applying splitting AVF method to (16), and finally obtain a strong convergence
theorem for the fully discrete numerical method.

Let N,M ∈ N+ and T = Mh and denote ZM+1 = {0, 1, . . . ,M}. For any
T > 0, we partition the time domain [0, T ] uniformly with nodes tm = mh, m =
0, 1, · · ·M . One may use the non-uniform discretization, and the analysis of both
the convergence and structure-preserving properties is similar.

We first decompose (1) into a deterministic system on [tm, tm+1],

duN,Dm (t) = vN,Dm (t)dt, dvN,Dm (t) = ΛNu
N,D
m (t)dt− PN (f(uN,Dm (t)))dt, (25)

and a stochastic system on [tm, tm+1],

duN,Sm (t) = 0, dvN,Sm (t) = PNdW (t). (26)

Then on each subinterval [tm, tm+1], uN,S(t) starting from uN,Sm (tm) = uN,Dm (tm+1)
and vN,Sm (t) starting from vN,Sm (tm) = vN,Dm (tm+1) can be formally viewed as approx-
imations of uN (t) with uN (tm) = uN,Dm (tm) and vN (t) with vN (tm) = vN,Dm (tm),
respectively.
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By further using the explicit solution of (26) and the AVF method to discretize
(25), we obtain the splitting AVF method

uNm+1 =uNm + hv̄Nm+ 1
2
,

v̄Nm+1 =vNm + hΛNu
N
m+ 1

2
− hPN

(∫ 1

0

f(uNm + θ(uNm+1 − uNm))dθ

)
,

vNm+1 =v̄Nm+1 + PNδWm,

(27)

where uN0 = PNu0, v
N
0 = PNv0, v̄N

m+ 1
2

= 1
2 (v̄Nm+1 +vNm), uN

m+ 1
2

= 1
2 (uNm+1 +uNm) and

the increment δWm := W (tm+1)−W (tm) =
∑∞
k=1(βk(tm+1)− βk(tm))Q

1
2 ek.

Denote

A(t) =

(
I t

2I
ΛN

t
2 I

)
, B(t) =

(
I − t

2I
−ΛN

t
2 I

)
and M(t) = I − ΛN

t2

4 . By the spectral expansion of ΛN , one can verify that

B−1 =

(
M−1(t) 0

0 M−1(t)

)
A. Therefore, it holds that

B−1(t)A(t) =

(
M−1(t) 0

0 M−1(t)

)
A2(t) =

(
2M−1(t)− I M−1(t)t
M−1(t)ΛN t 2M−1(t)− I

)
.

This formula yields that (27) can be rewritten as(
uNm+1

vNm+1

)
= B−1(h)A(h)

(
uNm
vNm

)
(28)

+ B−1(h)

(
0

−hPN
(∫ 1

0
f(uNm + θ(uNm+1 − uNm))dθ

))
+

(
0

PN (δWm)

)
.

Here we omit the dependence on N of B,A,M for simplicity since the error estimate
for the spectral Galerkin method has been established in the previous section.

In the appendix, we prove the well-posedness of the proposed scheme. Indeed, by
(40), there exists a sufficiently small h0 > 0 which is not depending on N such that
the numerical solution of (27) exists and is unique (see more details in appendix).
Throughout this section, we always require that the temporal step size h ≤ h0.
When performing the numerical scheme (27), some iterations procedures are used
to approximate (27) since the AVF scheme is implicit. However, the overall error
analysis involving Picard’s iteration or Netwon’s iteration and the AVF scheme for
SWEs with non-globally Lipschitz coefficients is beyond the scope of this current
paper.

To study the strong convergence of the proposed numerical method, we first give
some estimates of the matrix B−1(·)A(·).
Lemma 4.1. For any r ≥ 0, t ≥ 0, and w ∈ Hr, ‖B−1(t)A(t)w‖Hr = ‖w‖Hr .
Proof. When t = 0, B−1(0)A(0) = I. The desired property holds. When t > 0,
B−1(t)A(t) is unitary in Hr if and only if the discrete scheme defined by

uNm+1 =uNm + tvNm+ 1
2
,

vNm+1 =vNm + tΛNu
N
m+ 1

2
,m ∈ N+,

keeps the Hr-norm of XN
m := (uNm, v

N
m). This is true by considering the ‖XN

m+1‖2Hr−
‖XN

m‖2Hr . Indeed, we have that

‖XN
m+1‖2Hr − ‖XN

m‖2Hr
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= ‖uNm+1‖2Ḣr − ‖u
N
m‖2Ḣr + ‖vNm+1‖2Ḣr−1 − ‖vNm‖2Ḣr−1

= 〈uNm+ 1
2
, tv̄Nm+ 1

2
〉Ḣr + 〈vNm+ 1

2
, tΛNu

N
m+ 1

2
〉Ḣr−1 .

The definition of Ḣr yields that ‖XN
m+1‖2Hr = ‖XN

m‖2Hr .

Following [6, Theorem 3], we give the following lemma which is applied to the
error estimate for (27).

Lemma 4.2. For any r ≥ 0 and h ≥ 0, there exists a positive constant C := C(r)
such that for any w ∈ Hr+2,

sup
N∈N+

‖(EN (h)− B−1(h)A(h))w‖Hr ≤ Ch2‖w‖Hr+2 ,

sup
N∈N+

‖(EN (h)− B−1(h))w‖Hr ≤ Ch‖w‖Hr+1 .
(29)

4.1. Useful a priori bounds and exponential moment of numerical solu-
tions. In this part, we provide several useful bounds on the numerical solution
of (26), as well as its energy evolution law. Denote V1(uNm, v

N
m) := 1

2‖u
N
m‖2Ḣ1 +

1
2‖v

N
m‖2L2 +

∫
O F (uNm)dx+ C1 with C1 > b1. Recall that b1 is defined in (7).

Proposition 4.1. Assume that T > 0, p ≥ 1. Then the solution of (27) satisfies

sup
N∈N+

sup
m∈ZM+1

E(V p1 (uNm, v
N
m)) ≤ C, (30)

where N ∈ N+, Mh = T, M ∈ N+, C = C(X0,Q, T, p) > 0.

Proof. Fix t ∈ Tm := [tm, tm+1] with m ∈ ZM . Recall that the splitting process
uN,Sm , vN,Sm in (26) defined in Tm. Let uN,Sm (t) = uNm+1, v

N,S
m (tm) = v̄Nm+1. Then on

the interval Tm, we have

V1(uNm+1, v
N
m+1) =V1(uNm+1, v̄

N
m+1) +

∫ tm+1

tm

〈vN,Sm (t), PNdW (t)〉L2

+

∫ tm+1

tm

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
dt.

Due to the fact that duN,Sm (t) = 0 and dvN,Sm (t) = PNdW (t), we can apply the Itô’s
formula to V p1 (uN,Sm (t), vN,Sm (t)) and obtain that for p ≥ 2

V p1 (uN,Sm (t), vN,Sm (t)) = V p1 (uN,Sm (tm), vN,Sm (tm))

+
p

2

∫ t

tm

V p−1
1 (uN,Sm (r), vN,Sm (r))Tr

(
(PNQ

1
2 )(PNQ

1
2 )∗
)
dr

+ p

∫ t

tm

V p−1
1 (uN,Sm (r), vN,Sm (r))〈vN,Sm (s), PNdW (r)〉L2

+
p(p− 1)

2

N∑
i=1

∫ t

tm

V p−2
1 (uN,Sm (r), vN,Sm (r))〈vN,Sm (r),Q

1
2 ei〉2L2dr.

Taking the expectation on both sides of the above equation, using the martingality
of the stochastic integral and applying the Hölder and Young inequalities,

E(V p1 (uN,Sm (t), vN,Sm (t))) ≤E(V p1 (uNm+1, v̄
N
m+1))

+ C

∫ t

tm

(1 + E(V p1 (uN,Sm (r), vN,Sm (r))))dr,
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which, together with the Gronwall inequality and the property that

V1(uNm+1, v̄
N
m+1) = V1(uNm, v

N
m), (31)

leads to E(V p1 (uNm+1, v
N
m+1)) ≤ exp(Ch)

(
E(V p1 (uNm, v

N
m)) + Ch

)
. Since Mh = T ,

iteration arguments lead to

sup
m∈ZM

E(V p1 (uNm+1, v
N
m+1)) ≤ exp(CT )E(V p1 (uN0 , v

N
0 )) + exp(CT )CT,

which implies the estimate (30).

From the above proof of Proposition 4.1, we get the following theorem which
shows that the proposed method admits the following evolution law of the energy
V1.

Theorem 4.1. Let T > 0. Then the solution of (27) satisfies

V1(uNm+1, v
N
m+1) =V1(uNm, v

N
m) +

∫ tm+1

tm

〈vN,Sm (t), PNdW (t)〉L2

+

∫ tm+1

tm

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
ds,

where N ∈ N+,m ∈ ZM+1, Mh = T, M ∈ N+, vN,Sm is the splitting process defined
in (26) with initial value vN,Sm (tm) = v̄N

m+ 1
2

. In particular, it holds that

E(V1(uNm, v
N
m)) =V1(uN0 , v

N
0 ) +

1

2
Tr
(

(PNQ
1
2 )(PNQ

1
2 )∗
)
tm,

where N ∈ N+,m ∈ ZM+1, Mh = T, M ∈ N+.

Beside the energy-preserving property, the proposed numerical method also in-
herits the exponential integrability property of the original system as following.

Proposition 4.2. Let d = 1, 2, and T > 0. Then the solution of (27) satisfies

sup
N∈N+

E

[
exp

(
ch

m∑
i=0

‖uNi ‖2L6

)]
≤ C (32)

for any c > 0, where C := C(X0,Q, T, c) > 0, N ∈ N+,m ∈ ZM+1, M ∈ N+,Mh =
T.

Proof. Notice that

V1(uNm+1, v
N
m+1) = V1(uN,Sm (tm+1), vN,Sm (tm+1)),

where vN,Sm (tm+1) is the solution of (26) defined on [tm, tm+1] with vN,Sm (tm) = v̄Nm+1

and uN,Sm (tm) = uNm+1. Denote F̃N := (0, 0)>. Then for α > 0,(
GF̃N ,GN (V1)

)
(uN,Sm , vN,Sm ) +

1

2 exp(αt)

∞∑
i=1

〈(PNQ
1
2 )∗vN,Sm , ei〉2L2

≤1

2
Tr(Q) +

1

exp(αt)
V1(uN,Sm , vN,Sm )Tr(Q).

Let Ū = − 1
2Tr(Q), α ≥ Tr(Q). Then using [14, Lemma 3.1], it holds that for

t ∈ [tm, tm+1],

E
[
exp

(
e−αtm

(V1(uN,Sm (t), vN,Sm (t))

exp(α(t− tm))
+

∫ t

tm

Ū(s)

exp(α(r − tm))
dr
)) ∣∣∣Ftm]
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≤ exp

(
V1(uN,Sm (tm), vN,Sm (tm))

exp(αtm)

)
.

Thus, we have

E
[
exp

(
V1(uN,Sm (t), vN,Sm (t))

exp(αt)
+

∫ t

tm

Ū(s)

exp(αr)
dr

)]
= E

[
E
[
exp

(
V1(uN,Sm (t), vN,Sm (t))

exp(αt)
+

∫ t

tm

Ū(s)

exp(αr)
dr

) ∣∣∣Ftm]]
≤ E

[
exp

(V1(uNm+1, v̄
N
m+1)

exp(αtm)

)]
= E

[
exp

(V1(uNm, v
N
m)

exp(αtm)

)]
,

where we use the fact that on [tm, tm+1], vN,Sm (tm) = v̄Nm+1 and uN,Sm (tm) =

uNm+1 and that the energy preservation of the AVF method, V1(uNm+1, v̄
N
m+1) =

V1(uNm, v
N
m).

Repeating the above arguments on every subinterval [tl, tl+1], l ≤ m − 1, we
obtain

E
[
exp

(
V1(uNm+1, v

N
m+1)

exp(αtm+1)

)]
≤ exp

(
V1(uN0 , v

N
0 )
)

exp

(
−
∫ tm+1

0

Ū(r)

exp(αr)
dr

)
.

(33)

Now, we are in a position to show (32). By using Jensen’s inequality, the Gagliardo–
Nirenberg inequality (10), and the Young inequality, we have that

E

[
exp

(
ch

m∑
i=0

‖uNi ‖2L6

)]
≤ sup
i∈ZM+1

E
[
exp(cT‖uNi ‖2L6)

]
≤ sup
i∈ZM+1

E
[
exp

(
‖∇uNi ‖2L2

2 exp(αti)

)
exp

(
exp(

a

1− a
αT )‖uNi ‖2L2(cCT )

1
1−a 2

a
1−a

)]
.

Then the Hölder and the Young inequalities imply that for small enough ε > 0,

E

[
exp

(
ch

m∑
i=0

‖uNi ‖2L6

)]
≤ C(ε, d) sup

i∈ZM+1

E
[
exp

(
‖∇uNi ‖2L2

2 exp(αti)

)
exp(ε‖uNi ‖4L4)

]
≤ C(ε, d) sup

i∈ZM+1

E
[
exp

(
V1(uNi , v

N
i )

exp(αti)

)]
.

By applying (33), we complete the proof.

Assume that X0 ∈ H2, T > 0 and ‖(−Λ)
1
2Q

1
2 ‖ < ∞. By introducing the Lya-

punov functional

V2(uNm, v
N
m) =

1

2

∥∥ΛuNm
∥∥2

L2 +
1

2

∥∥∇vNm∥∥2

L2 +
1

2
〈(−Λ)uNm, f(uNm)〉L2 ,

similar and tedious arguments as in the proof of [15, Lemma 3.3] yield that for any
p ≥ 1, there exists a constant C = C(X0,Q, T, p) > 0 such that

E

[
sup

m∈ZM+1

‖uNm‖
p

Ḣ2

]
≤ C.

The above estimate could be used to remove the infinitesimal factor in the strong
convergence order in (2) when d = 2.
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4.2. Strong convergence rate analysis. Based on the above exponential inte-
grability property of {uNi }1≤i≤M and Lemma 3.3, we obtain the strong convergence
rate in temporal direction as follows. In Proposition 4.3 below, we use the index
γ = min (β, 2) to measure the convergence order since the order of convergence may
not exceed 1 when β < 2.

Proposition 4.3. Let d = 1, β ≥ 1 or d = 2, β = 2. Let γ = min (β, 2) and T > 0.

Assume that X0 ∈ Hβ , ‖(−Λ)
β−1
2 Q

1
2 ‖L2(L2) < ∞. For d = 1, there exists h0 > 0

such that for h ≤ h0, p ≥ 1,

sup
m∈ZM+1

E
[
‖XN (tm)−XN

m‖2p
]
≤ Chγp, (34)

where C := C(p,X0,Q, T ) > 0, N ∈ N+, M ∈ N+,Mh = T.
When d = 2, it holds that

sup
m∈ZM+1

E
[
‖XN (tm)−XN

m‖2p
]
≤ C1h

γpλ2εp
N , (35)

for sufficiently small ε > 0, where C1 = C1(p,X0,Q, T ) > 0, N ∈ N+, M ∈
N+,Mh = T.

Proof. Let εi = XN (ti) − XN
i for i ∈ ZM+1. Fix m ∈ {1, · · · ,M}. Using (28)

iteratively, we have

XN
m = (B−1(h)A(h))mXN

0 +

m−1∑
j=0

∫ tj+1

tj

(B−1(h)A(h))(m−1−j)

(
0

PNdW (s)

)

+

m−1∑
j=0

∫ tj+1

tj

−(B−1(h)A(h))(m−1−j)B−1(h)

(
0

PN (
∫ 1

0
f(uN

j + θ(uN
j+1 − uN

j ))dθ)ds

)
.

From the above equation and (17), it follows that

εm =(E(tm)− (B−1(h)A(h))m)XN
0

+

m−1∑
j=0

∫ tj+1

tj

(
E(tm − s)− (B−1(h)A(h))(m−1−j)

)(
0

PNdW (s)

)

+

m−1∑
j=0

∫ tj+1

tj

(
E(tm − s)

(
0

−PN (f(uN (s)))

)
− (B−1(h)A(h))(m−1−j)

· B−1(h)

(
0

−PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

))
ds.

This implies that

‖εm‖H ≤‖(E(tm)− (B−1(h)A(h))m)XN
0 ‖H

+

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(
E(tm − s)− (B−1(h)A(h))(m−1−j)

)( 0
PNdW (s)

)∥∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(
E(tm − s)

(
0

PN (f(uN (s)))

)
− (B−1(h)A(h))(m−1−j)

· B−1(h)

(
0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

))
ds

∥∥∥∥∥
H
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≤Ch
γ
2 ‖XN

0 ‖Hγ + Err1
m + Err2

m.

We first deal with the term Err2
m and decompose it into several parts as following

Err2
m ≤

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(E(tm − s)− E(tm−1 − s)B−1(h))

(
0

PN (f(uN (s)))

)
ds

∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

E(tm−1 − s)B−1(h)

(
0

PN (f(uN (s)))

)
− (B−1(h)A(h))(m−1−j)

· B−1(h)

(
0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

)
ds

∥∥∥∥∥
H

=: I + II.

Using the Hölder inequality, the Young inequality and (29), we have

I ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥∥∥(E(h)− B−1(h))

(
0

PN (f(uN (s)))

)∥∥∥∥∥
H

ds

≤Ch
m−1∑
j=0

∫ tj+1

tj

‖f(uN (s))‖L2ds.

For the term II, denoting [ sh ] the integer part of s
h , we obtain

II ≤

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

E(tm−1 − s)B−1(h)

(
0

PN (f(uN (s))− f(uN (t[ s
h
]))

)
ds

∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

E(tm−1 − s)B−1(h)

(
0

PN (f(uN (t[ s
h
]))− f(uN

[ s
h
]))

)
ds

∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

E(tm−1 − s)B−1(h)

(
0

PN (f(uN
[ s
h
])−

∫ 1

0
f(uN

j + θ(uN
j+1 − uN

j ))dθ)

)
ds

∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(E(tm−1 − s)− (B−1(h)A(h))(m−1−j))B−1(h)

·
(

0

PN (
∫ 1

0
f(uN

j + θ(uN
j+1 − uN

j ))dθ)

)
ds

∥∥∥∥∥
H

=: II1 + II2 + II3 + II4.

Now we estimate IIi, i = 1, 2, 3, 4, separately.

Recall that B−1(h) =

(
M−1(h) 0

0 M−1(h)

)
A and A(t) =

(
I t

2I
ΛN

t
2 I

)
, where

M(h) = I − ΛN
h2

4 . For the first term II1, using the boundedness of E(·), we have

II1 ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥∥M−1(h)
h

2
PN (f(uN (s))− f(uN (t[ sh ])))

∥∥∥∥
L2

ds

+

m−1∑
j=0

∫ tj+1

tj

∥∥∥M−1(h)PN (f(uN (s))− f(uN (t[ sh ])))
∥∥∥
Ḣ−1

ds.
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By means of the inequalities | 4
4+λih2 | ≤ C and

∣∣∣ 2h
4+λih2

∣∣∣ ≤ Cλ
− 1

2
i for some C > 1,

we have

II1 ≤ C
m−1∑
j=0

∫ tj+1

tj

∥∥∥PN (f(uN (s))− f(uN (t[ s
h
])))
∥∥∥
Ḣ−1

ds

≤ C
m−1∑
j=0

∫ tj+1

tj

∥∥∥(uN (s))2 + (uN (t[ s
h
]))

2 + uN (s)uN (t[ s
h
]))(u

N (s)− uN (t[ s
h
]))
∥∥∥
Ḣ−1

ds

+ C

m−1∑
j=0

∫ tj+1

tj

∥∥∥(uN (s) + uN (t[ s
h
]))(u

N (s)− uN (t[ s
h
]))
∥∥∥
Ḣ−1

ds

+ C

m−1∑
j=0

∫ tj+1

tj

∥∥∥uN (s)− uN (t[ s
h
])
∥∥∥
Ḣ−1

ds.

Based on the Young inequality, Sobolev embedding L
6
5 ↪→ Ḣ−1 and the Hölder

inequality,

II1 ≤C
m−1∑
j=0

∫ tj+1

tj

(‖uN (s)‖2L6 + ‖uN (t[ sh ])‖2L6 + 1)‖uN (s)− uN (t[ sh ])‖L2ds.

Similarly, the term II2 satisfies

II2 ≤ C
m−1∑
j=0

∫ tj+1

tj

(‖uN (t[ sh ])‖2L6 + ‖uN[ sh ]‖
2
L6 + 1)‖uN (t[ sh ])− uN[ sh ]‖L2ds.

For the term II3, using again Sobolev embedding L
6
5 ↪→ Ḣ−1 and the properties of

B, as well as the mean value theorem, we have

II3 ≤
m−1∑
j=0

∫ tj+1

tj

‖PN (f(uN[ sh ])−
∫ 1

0

f(uNj + θ(uNj+1 − uNj ))dθ)‖Ḣ−1ds,

≤
m−1∑
j=0

∫ tj+1

tj

∫ 1

0

‖
∫ θ

0

f ′(λuNj + (1− λ)θ(uNj+1 − uNj ))(uNj+1 − uNj )dλ‖Ḣ−1dθds.

Then the fact that uNj+1 − uNj = h
2 (v̄Nj+1 + vNj ) and the property L

6
5 ↪→ Ḣ−1 yield

that

II3 ≤Ch2
m−1∑
j=0

(‖uNj ‖2L6 + ‖uNj+1‖2L6 + 1)(‖v̄Nj+1‖L2 + ‖vNj ‖L2).

With respect to the term II4, using Lemma 4.2 and the boundedness of E(·) and
B−1(·)A(·), we have

‖(E(tm−1 − tj)− (B−1(h)A(h))(m−1−j))g‖L2 ≤ Cmh2‖g‖Ḣ2 , g ∈ Ḣ2.

On the other hand, it holds that

‖(E(tm−1 − tj)− (B−1(h)A(h))(m−1−j))g‖L2 ≤ C‖g‖L2 , g ∈ L2.

An interpolation argument yields that for γ ∈ [0, 2],

‖(E(tm−1 − tj)− (B−1(h)A(h))(m−1−j))g‖L2 ≤ Ch
γ
2 ‖g‖Ḣγ .
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As a result, using Lemma 2.1, we have

II4 ≤

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(E(tm−1 − s)− E(tm−1 − tj))B−1(h)

·
(

0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

)
ds

∥∥∥∥∥
H

+

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

(E(tm−1 − tj)− (B−1(h)A(h))(m−1−j))B−1(h)

·
(

0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

)
ds

∥∥∥∥∥
H

≤
m−1∑
j=0

∫ tj+1

tj

(s− tj)

∥∥∥∥∥B−1(h)

(
0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

)∥∥∥∥∥
H1

ds

+

m−1∑
j=0

∫ tj+1

tj

h
γ
2

∥∥∥∥∥B−1(h)

(
0

PN (
∫ 1

0
f(uNj + θ(uNj+1 − uNj ))dθ)

)∥∥∥∥∥
Hγ
ds

≤C
m−1∑
j=0

∫ tj+1

tj

(s− tj)
∫ 1

0

‖f(uNj + θ(uNj+1 − uNj ))‖L2dθds

+ Ch
γ
2

m−1∑
j=0

∫ tj+1

tj

∫ 1

0

‖f(uNj + θ(uNj+1 − uNj ))‖Ḣγ−1dθds.

For the case that d = 1, β ≥ 1, taking γ = min(β, 2), the Sobolev embedding

Ḣ 1
2 +ε ↪→ L∞ for a small number ε > 0 leads to∫ tj+1

tj

∫ 1

0

‖f(uNj + θ(uNj+1 − uNj ))‖Ḣγ−1dθds

≤C
∫ tj+1

tj

∫ 1

0

(1 + ‖uNj + θ(uNj+1 − uNj )‖2L∞)‖uNj + θ(uNj+1 − uNj )‖Ḣγ1−1dθds

≤Ch(1 + ‖uNj ‖2Ḣ 1
2
+ε

+ ‖uNj+1‖2Ḣ 1
2
+ε

)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1)

≤Ch(1 + ‖uNj ‖2Ḣ1 + ‖uNj+1‖2Ḣ1)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1).

Note that the energy evolution bound in Proposition 4.1 gives the upper bound of
‖uNj ‖Lp(Ω;Ḣ1) for any p ≥ 1.

For the case that d = 2, β = 2, using the Sobolev embedding Ḣ1+ε ↪→ L∞, for
ε > 0 sufficiently small,∫ tj+1

tj

∫ 1

0

‖f(uNj + θ(uNj+1 − uNj ))‖Ḣγ−1dθds (36)

≤Ch(1 + ‖uNj ‖2Ḣ1+ε + ‖uNj+1‖2Ḣ1+ε)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1).

To sum up, we have

II4 ≤Ch
γ
2 h

m−1∑
j=0

(1 + ‖uNj ‖2Ḣκ + ‖uNj+1‖2Ḣκ)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1),
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where κ = 1 for d = 1 and κ = 1 + ε for d = 2. Based on the estimates of I and II,
we obtain

‖εm‖H ≤
m−1∑
j=0

Φj‖εj‖H +

m−1∑
j=0

ψj + Err1
m + Ch

γ
2 ‖XN

0 ‖Hγ , (37)

where for j = 0, 1, · · · , (m− 1), Φj = Ch(‖uN (tj)‖2L6 + ‖uNj ‖2L6 + 1), and

ψj =Ch

∫ tj+1

tj

‖(f(uN (s)))‖L2ds

+ Ch
γ
2 h(1 + ‖uNj ‖2Ḣκ + ‖uNj+1‖2Ḣκ)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1)

+ C

∫ tj+1

tj

(‖uN (s)‖2L6 + ‖uN (t[ sh ])‖2L6 + 1)‖uN (s)− uN (t[ sh ])‖L2ds

+ Ch2(‖uNj ‖2L6 + ‖uNj+1‖2L6 + 1)(‖v̄Nj+1‖L2 + ‖vNj ‖L2).

By the discrete Gronwall’s inequality (see e.g., [15, Lemma 2.6]), we have

‖εm‖H ≤

Ch γ2 ‖XN
0 ‖Hγ + Err1

m +

m−1∑
j=0

ψj

 exp

m−1∑
j=0

Φj

 .

Taking the 2pth moment and using the Hölder inequality, we have

E‖εm‖2pH ≤

E
Ch γ2 ‖XN

0 ‖Hγ + Err1
m +

m−1∑
j=0

ψj

4p


1
2 E exp

4p

m−1∑
j=0

Φj

 1
2

.

According to the exponential integrability of uN and uNm, the above inequality be-
comes

E‖εm‖2pH ≤Ch
γp‖XN

0 ‖
2p
Hγ + C

[
E(Err1

m)4p
] 1

2 + Cm2p− 1
2

m−1∑
j=0

Eψ4p
j

 1
2

.

Thanks to Lemma 2.1 and an interpolation version of Lemma 4.2, we obtain

E(Err1
m)4p ≤C

[∫ tm

0

∥∥∥(E(tm − s)− (B−1(h)A(h))(m−1−[ sh ]))GNQ
1
2

∥∥∥2

L2(H)
ds

]2p

≤C sup
0≤s≤tm

∥∥∥(E(tm − s)− E(tm−1 − t[ sh ]))GNQ
1
2

∥∥∥4p

L2(H)

+ C sup
0≤s≤tm

∥∥∥(E(tm−1 − t[ sh ])− (B−1(h)A(h))(m−1−[ sh ]))GNQ
1
2

∥∥∥4p

L2(H)

≤C(h2γp + h4p),

where GNQ
1
2 = (0, PNQ

1
2 )>. This leads to

E‖εm‖2pH ≤ Ch
γp‖XN

0 ‖
2p
Hγ + C(hγp + h2p) + Cm2p− 1

2

m−1∑
j=0

Eψ4p
j

 1
2

.
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According to the Hölder inequality, the a prior estimates of uN and uNm and the
Hölder continuity of uN , we obtain that for d = 1,

Eψ4p
j ≤Ch

4pE

(∫ tj+1

tj

‖f(uN (s))‖L2ds

)4p

+ Ch2γph4pE
(
(1 + ‖uNj ‖2Ḣκ + ‖uNj+1‖2Ḣκ)(‖uNj ‖Ḣγ−1 + ‖uNj+1‖Ḣγ−1)

)4p
+ CE

(∫ tj+1

tj

(‖uN (s)‖2L6 + ‖uN (t[ sh ])‖2L6 + 1)‖uN (s)− uN (t[ sh ])‖L2ds

)4p

+ Ch8pE
[
(‖uNj ‖2L6 + ‖uNj+1‖2L6 + 1)(‖v̄Nj+1‖L2 + ‖vNj ‖L2)

]4p
≤C(h8p + h4p+2γp + h8p + h8p) ≤ Ch8p + Ch4p+2γp.

When d = 2, using the inverse inequality for spectral Galerkin approximation, i.e.,

‖uNj ‖2Ḣκ + ‖uNj+1‖2Ḣκ ≤ Cλ
−ε
N (‖uNj ‖2Ḣ1 + ‖uNj+1‖2Ḣ1),

and the above argument, we obtain that

Eψ4p
j ≤ Ch

8p + Ch4p+2γpλ4εp
N .

As a consequence, when d = 1,

E‖εm‖2pH ≤ Ch
γpE‖XN

0 ‖
2p
Hγ + C(hγp + h2p) + Cm2ph2p+γp + Cm2ph4p ≤ Chγp,

and when d = 2,

E‖εm‖2pH ≤ Ch
γpE‖XN

0 ‖
2p
Hγ + C(hγp + h2p) + Cm2ph2p+γpλ2εp

N + Cm2ph4p

≤ Chγpλ2εp
N ,

which completes the proof.

Finally, the above convergence result in Proposition 4.3, together with Proposi-
tion 3.4, implies Theorem 1.1.

5. Numerical experiments. In this section we provide some numerical examples
to illustrate the accuracy and capability of the method developed in the previous
section for the following d-dimensional stochastic nonlinear wave equation

du = vdt,

dv = Λudt− u3dt+ dW (t), in O × (0, T ],

u(0, x) = 0, v(0, x) = 1, in O
(38)

with O = (0, 1)d for d = 1, 2 and T = 1.

Example 5.1. We study the stochastic nonlinear wave equation (38) with β = 1,
2, 3 and 5 in 1-dimensional case. Furthermore, we choose the orthonormal basis
{ek}k∈N+ of L2([0, 1]) and the corresponding eigenvalues {ηk}k∈N+ of Q as

ek(x) =
√

2 sin(kπx), ηk =
1

k2β−1
, k = 1, 2, . . . , x ∈ [0, 1].

We fix N = 100 (space discretization parameter) and then apply the method
(27) with different M = 2r, r = 2, 3, · · · , 7 (time discretization parameter). In
general, structure-preserving numerical methods for nonlinear stochastic differen-
tial equations are implicit. In the course of numerical implementation, they are
approximated by means of the fixed point iteration or the Picard approximation at
each step. As a consequence, one needs to solve nonlinear algebraic equations, and
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the preservation of mathematical structures will be somewhat damaged due to the
fixed point iteration. It remains unclear to analyze the overall error of utilizing the
fixed point iteration or Newton’s method and implicit method for the considered
equation (we refer to [24] for a recent related study). Fig. 1(a) shows the temporal
error for various parameters β, where the expectation in the error is approximated
by the mean of 1000 independent realizations. The splitting AVF method (27)
clearly converges with the rate 1/2 in time when β = 1 and with the rate 1 in time
when β = 2, 3 and 5, which coincide with the theoretical analysis.

Fig. 1(b) displays the spatial error for various parameters β. Here, we fix M =
210 (time discretization) and apply the method (27) with different N = 2s, s =
4, 5, · · · , 9 (space discretization). It can be observed that the proposed method (27)
is of order β/2 in spatial direction. This coincides with our theoretical findings.
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Figure 1. Strong convergence order in time and space for the fully
discrete numerical method (27) applied to stochastic wave equation
(38).

Example 5.2. We study the stochastic nonlinear wave equation (38) with β = 2
in 2-dimensional case. In the sequel, we choose the orthonormal basis {ek,l}k,l∈N+

of L2([0, 1]2) and the corresponding eigenvalues {ηk,l}k,l∈N+ of Q as

ek,l = 2 sin(kπx) sin(lπy), ηk,l =
1

(k2 + l2)2
, k, l = 1, 2, . . . , (x, y) ∈ [0, 1]2.

Fig. 2(a) presents the evolution of discrete energy using the proposed methods
in Section 4, where the red line represents the discrete averaged energy along 500
trajectories. From Theorem 4.1, we noted that, the averaged energy evolution law
E(V1(uNm, v

N
m)) follows a linear evolution with growth rate 1

2Tr((PNQ
1
2 )(PNQ

1
2 )∗).

It can be observed from Fig. 2(a) that the discrete averaged energy obeys nearly
linear growth over 500 trajectories, which coincides with the theoretical analysis.

Now let us start with tests on the convergence rates. First of all, we consider the
spatial convergence rate of the numerical method (27). The middle figure in Fig.
2 displays the spatial approximation errors sup

0≤t≤T
‖XN (t)−X(t)‖Lp(Ω;H) against N

on a log-log scale with N = 2s, s = 4, 5, · · · , 9. It can be observed that the slope is
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Figure 2. : Energy-preserving property and strong convergence
order in space and time for the fully discrete numerical method
(27) applied to stochastic wave equation (38).

closed to 1 which is consistent with our previous theoretical result (see Proposition
3.4) on the spatial convergence order. Note that for the temporal discretization we
used here the proposed method (27) at a sufficiently small time step-size h = 2−10.
In addition, N = 211 is used to simulate the reference solution.

To investigate the strong convergence order in temporal direction of (27) by
using various step-sizes h = 2−r, r = 2, 3, · · · , 7, we now fix N = 100. Again, the
“reference’ solution is approximated by the method (27) with a very small time step-
size h = 2−12. The right figure in Fig. 2 presents the strong approximation errors of
the proposed method (27) in temporal direction. It can be seen that this numerical
performance coincides with the theoretical assertion (see Proposition 4.3).

6. Appendix. Existence and uniqueness of numerical solution of (27). To
prove the well-posedness of the numerical scheme, we need to show that the existence
and uniqueness of numerical solution of the scheme at each (m+1)-th step . Assume
that d ≤ 2, Tr(Q) <∞, h0 > 0 to be determined later, the temporal step size h <

h0, and that (uNm, v
N
m)> ∈ H1 is Ftm-measurable and E

[
exp(V1(uNm, v

N
m)e−αtm)

]
≤

C for some α(Q,T, u0, v0, d) ≥ 1 and C(Q,T, u0, v0, d) > 0. The proof is similar to
that of [26, Lemma 8.1] by making use of the structure of the drift coefficient f and
the fact that (1) is a separable system.

Since the last equation in (27) has an explicit analytical solution, it suffices to
show the existence of a unique solution for the first two equations in (27), that is,

uNm+1 =uNm + hv̄Nm+ 1
2
, (39)

v̄Nm+1 =vNm + hΛNu
N
m+ 1

2
− hPN

(∫ 1

0

f(uNm + θ(uNm+1 − uNm))dθ

)
.

Finding the solution of the above system is equivalent to the solvability of finding
ṽ such that

ṽ − vNm −
1

2
hΛN (uNm +

1

2
hṽ) +

1

2
hPN

(∫ 1

0

f(uNm + θhṽ)dθ

)
= 0.
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Let y ∈ R be a real variable. Choosing F̃ (ξ, y) > 0 as the anti-derivative of
1
2h
∫ 1

0
f(ξ + θhy)dθ for fixed ξ ∈ R, then it suffices to find v∗ which minimizes

1

2
‖ṽ − vNm‖2L2 +

1

2
‖uNm +

1

2
hṽ‖2Ḣ1 +

∫
O
F̃ (uNm, ṽ)dx.

The existence of the minimizer is guaranteed by the fact that f(·) is smooth and
its anti-derivative is bounded below. Furthermore, the uniqueness is obtained by
using the fact f(u) = c3u

3 + · · · + c1u + c0 is a polynomial with c3 > 0. Indeed,
there exists C(c3, c2, c1, c0) > 0 such that (f(x)− f(y)) · (x− y) ≥ −C‖x− y‖2.

Assume that we have two different numerical solutions (ũ1, ṽ1) and (ũ2, ṽ2) in
PN (H) of (27) with the same initial condition (uNm, v

N
m). Then

ṽi −
1

2
hΛN (uNm +

h

2
ṽi) + PN

(
∂

∂y
F̃ (uNm, ṽi)

)
= vNm , i = 1, 2.

Using c3 > 0 and the Poincaré inequality, we have that

0 ≥ (1 + λ1
h2

4
− C ′h2)‖ṽ1 − ṽ2‖2L2 (40)

for some constant C ′(c3, c2, c1, c0). By taking h0 small enough such that 1+λ1
h2
0

4 >

C ′h2
0, the uniqueness of the numerical solution of (27) follows.

REFERENCES

[1] S. Aida, T. Masuda and I. Shigekawa, Logarithmic Sobolev inequalities and exponential in-
tegrability, J. Funct. Anal., 126 (1994), 83-101.

[2] L. Banjai, G. Lord and J. Molla, Strong convergence of a Verlet integrator for the semilinear
stochastic wave equation, SIAM J. Numer. Anal., 59 (2021), 1976-2003.

[3] S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to

logarithmic Sobolev inequalities, J. Funct. Anal., 163 (1999), 1-28.
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