Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109208
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorTeng, J-
dc.creatorChan, KY-
dc.creatorYiu, KFC-
dc.date.accessioned2024-09-24T04:20:51Z-
dc.date.available2024-09-24T04:20:51Z-
dc.identifier.issn1547-5816-
dc.identifier.urihttp://hdl.handle.net/10397/109208-
dc.language.isoenen_US
dc.publisherAIMS Pressen_US
dc.rights© 2023 The Author(s). Published by AIMS, LLC. This is an Open Access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Jiao Teng, Kit Yan Chan, Ka Fai Cedric Yiu. Solving American option optimal control problems in financial markets using a novel neural network. Journal of Industrial and Management Optimization, 2024, 20(12): 3792-3815 is available at https://doi.org/10.3934/jimo.2024071.en_US
dc.subjectAmerican optionen_US
dc.subjectLinear complementarity problemen_US
dc.subjectNeural networksen_US
dc.subjectOptimal control problemen_US
dc.subjectPartial differential equation solveren_US
dc.titleSolving American option optimal control problems in financial markets using a novel neural networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3792-
dc.identifier.epage3815-
dc.identifier.volume20-
dc.identifier.issue12-
dc.identifier.doi10.3934/jimo.2024071-
dcterms.abstractIn this paper, we introduce a novel neural network (NN) for solving optimal control problems associated with American options in financial markets. American options provide holders with the flexibility to exercise the option before expiration, thereby affecting potential profitability. This paper focuses on determining the optimal exercise strategy and option price to maximize the payoff by solving a class of American option optimal control problems. We reformulate the optimal control problem into a linear complementarity problem(LCP). Subsequently, we employ the penalty approach and smoothing method to convert the LCP into a bi-nonlinear system with a set of partial differential equations (PDEs). By solving the reformulated PDE equations with the proposed method, we obtain numerical solutions that yield the optimal exercise strategy and option price. Numerical examples of American call and put options demonstrate the efficiency and usefulness of the proposed methods.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of industrial and management optimization, Dec. 2024, v. 20, no. 12, p. 3792-3815-
dcterms.isPartOfJournal of industrial and management optimization-
dcterms.issued2024-12-
dc.identifier.scopus2-s2.0-85200991951-
dc.identifier.eissn1553-166X-
dc.description.validate202409 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University Grants; Research Centre for Quantitative Finance Granten_US
dc.description.pubStatusPublisheden_US
dc.description.TAAIMS (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.3934_jimo.2024071.pdf1.95 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

26
Citations as of Nov 24, 2024

Downloads

13
Citations as of Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.