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Abstract. In this paper, we introduce a novel neural network (NN) for solv-
ing optimal control problems associated with American options in financial

markets. American options provide holders with the flexibility to exercise the

option before expiration, thereby affecting potential profitability. This pa-
per focuses on determining the optimal exercise strategy and option price to

maximize the payoff by solving a class of American option optimal control
problems. We reformulate the optimal control problem into a linear comple-

mentarity problem(LCP). Subsequently, we employ the penalty approach and

smoothing method to convert the LCP into a bi-nonlinear system with a set of
partial differential equations (PDEs). By solving the reformulated PDE equa-

tions with the proposed method, we obtain numerical solutions that yield the

optimal exercise strategy and option price. Numerical examples of American
call and put options demonstrate the efficiency and usefulness of the proposed

methods.

1. Introduction. In recent years, Artificial Intelligence (AI) has grown rapidly.
Neural networks, as a key part of machine learning algorithms, are widely used in
numerous fields, from image analysis [21], scientific computing [15], natural language
processing [2], noise reduction [36], and finance [14]. At the same time, research
has been conducted to use neural networks for solving optimal control problems,
such as a tracking control algorithm based on fuzzy reinforcement learning [30] or
trajectory tracking control using neural networks [9].

Optimizing the timing for buying or selling an asset is crucial for trading and
risk management in financial markets. Therefore, the study of the optimal con-
trol problem for American options is essential, as it can assist in determining the
optimal exercise strategy and option value, providing vital insights and decision
support for trading and risk management in financial markets. American options
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allow for strikes at any time prior to the expiry date, which introduces a com-
plex optimal control problem, i.e., the optimal stopping time problem. Solving
the optimal control problems attempts to determine how the dynamical systems
are controlled with respect to a specific loss function [20]. Pontryagin’s maximum
principle depends on the solution of the two-point margin problem, which is not
an easy problem to solve [23]. Dynamic programming methods face the curse of
dimensionality and large time complexity [3]. Hence, numerical solution techniques
incorporating modern computing capability is essential to solve real world problems
with high computational complexity. In finance, buying or selling time of certain
assets can be optimized by solving an optimal control problem. For example, an
American option can be exercised at any time before the expiration date. In order
to determine its value at the moment of optimal exercise time, we need to tackle
the optimal stopping time problem to give the optimal exercise strategy and the
expected discounted return of the option.

The American option problem can be solved by the Monte Carlo method [7],
binomial method [10], and PDE method [37]. However, the computational cost of
the Monte Carlo method increases rapidly when the number of underlying assets
increases. The convergence of the binomial method is rather slow; higher accuracy
requires sufficiently long spatial truncation, which increases the storage space and
computational effort. The PDE method is a widely used and effective method.
Particularly, the PDE method is very effective for solving the corresponding linear
complementarity problem. In recent years, neural networks have been developed
to determine American options [25]. Gaspar et al. [13] demonstrated that the NN
method is better than the least-squares Monte Carlo (LSM) method. Anderson
et al. [1] employed deep neural networks (DNN) to solve the American option
pricing problem, and numerical results show that the DNN method is better than
the finite difference PDE method and binomial method. However, these methods
do not provide the essential exercise strategy and do not take full advantage of the
option information. In our work, we consider formulating the American option as
an optimal control problem. By solving the converted LCP, the optimal exercise
strategy and the American option value can be solved simultaneously.

The solution of the LCP holds great practical importance in the field of com-
putational mathematics. Despite existing analytical methods, numerous methods
have been developed to solve variational inequality problems or LCP over the past
decades. These methods include the interior point method [8], quadratic program-
ming method [19], Newton method [35], path searching method [12], and other
modified methods [28]. The common limitation of these methods is that complex
transformations based on the expertise of specialists are required before performing
the computations, although finite difference methods (FDMs) and finite element
methods (FEMs) can be used to approximate solutions for boundary-value prob-
lems in PDEs [17]. These methods also encounter certain challenges. First, when
solving high-dimensional problems, discretizing the high-dimensional space is un-
feasible, and the “dimensionality disaster” is caused. Additionally, the computation
at each discrete node depends solely on information from its neighboring nodes, and
the localization limitation is caused. Moreover, denser grids are required to achieve
high computational accuracy; thereby, more computation and storage are required.

Data-driven methods such as machine learning usually requires large amounts of
data to develop the prediction models. However, the cost of collecting data is too
expensive by performing experiments. Instrumentation measures are generally not
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accurate enough to obtain precise data with sufficient quality. In 2019, M. Raissi
et al. [24] proposed physics-informed neural networks (PINNs) method which com-
bines data and PDEs to solve mathematical physics problems. Neural networks
and physical modeling are used to solve PDEs problems. Currently, PINNs are
applied to solve many physics problems, such as fluid dynamics, heat conduction,
quantum physics, and solid mechanics. These physics problems are solved using
known physical laws and observational data, and physical equations are embedded
into neural networks, enabling the neural networks to directly learn and predict the
behavior of physical systems. Otherwise, PINNs are able to solve PDEs which are
too demanding to be solved by numerical simulations, as well as inverse problems
and constrained optimization [4]. Motivated by this approach, we propose a novel
neural network to solve the American option optimal control problem. In the pro-
posed method, the structural properties of the problem are integrated to train the
neural network.

The proposed method overcomes the limitations of the commonly used methods.
First, same as the meshless method, the proposed method eliminates the need for
meshing the solution area in order to avoid dimensionality disasters which are often
encountered in high-dimensional problems. Notably, our approach is able to take
into account the underlying structural properties of the problem rather than relying
solely on data. Hence, a more accurate and reliable solution is guaranteed to be
obtained. Additionally, the commonly used methods usually require experts to
transform the problems based on experience. In contrast, the proposed method
does not require too much specialized knowledge and has a lower threshold for use.
Moreover, in addition to deriving the option value, the proposed method provides
crucial insights into the optimal exercise time for the option. The proposed method
enables investors to make well-informed decisions and optimize their returns.

This paper attempts to determine the numerical solutions for the optimal control
problem of American options. The optimal control problem is first reformulated as a
linear complementarity problem (LCP). To address the LCP, we employ the penalty
function-based method and smoothing technique to convert LCP as the bi-nonlinear
PDEs. Subsequently, we apply the novel NN method to determine the numerical
solutions of the bi-nonlinear PDE equation. By solving the optimal control problem,
we can determine the optimal exercise strategy and option value of the American
option.

The main contribution of this article is summarized as follows:

1. A novel NN method is developed for solving the LCP. This method can be
applied to determine the numerical solution of the American options pricing
problem.

2. By solving the optimal control problem associated with American options, we
can obtain the optimal exercise strategy with the option price. This strategy
has significant and practical implications since it allows holders to intelligently
manage their assets and maximize their returns based on this strategy.

3. In contrast to traditional methods, which require experts to devise problem-
specific transformations, the proposed NN-based method provides a simpler
and adaptable approach in order to solve high-dimensional problems and QVI
(quasi-variational inequality) problems.

The rest of this paper is organized as follows. In Section 2, we present the general
optimal control problem of the American options and prove that the problem can
be reformulated as a LCP. In Section 3, we apply the penalty function approach and
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soothing technique to the LCP and we reformulate it as a bi-nolinear system of PDE
equations. Finally, we use the proposed NN algorithm to solve the reformulated
problem. Section 4 uses three examples to demonstrate the effectiveness and validity
of the proposed NN method.

2. Optimal control problem of American options. Financial derivatives, in-
cluding options, are widely traded in financial markets. Among them, options are
the most fundamental and widely used. Option pricing is essential in finance, as
it addresses various market trading and risk management aspects. Given an asset
price of S(t) at time t, the key questions from a financial perspective are: How to
determine the value V of the option? How to determine the optimal timing for
exercising the option in order to maximize returns?

European or American options are categorized by whether they can be performed
in advance or not. European options can only be exercised on the expiration date,
while American options can be exercised at any time before expiration. In the
absence of dividends, early exercise of American call options is typically not the
optimal choice. Hence, the values for both American call and European options are
equivalent. Conversely, for American put options, an optimal stopping time may
exist before the expiration.

American options give the holder the right to exercise the options at a specified
future time. Therefore, determining the exercise timing for American put options
is critical [5]. In fact, the American option pricing problem is a free boundary
problem. In financial engineering, it is also known as the optimal exercise boundary.
Mathematically, it can be formulated by the Black-Scholes equation and is solved
by identifying the best exercise curve represented by the free boundary. In the
context of optimal control, the pricing of American put options can be formulated
as an optimal control problem, where the option value is the optimal value and the
optimal exercise boundary is the optimal solution. Prior to solving this optimal
control problem, this section introduces the relevant background information and
key concepts associated with American options.

2.1. American options. Assuming that the market is in a complete state with no
arbitrage opportunities. St indicates the ex-dividend stock price at time t, behaves
based on the following geometric Brownian motion:

dSt = rStdt+ σStdWt,

where constants r > 0 and σ > 0 represent the growth rates without dividend
and volatility of the stock, respectively. Wt is a standard Brownian motion on a
probability space (Ω,F ,Q), Ω is a nonempty set, {Ft}t≥0 denotes the filtration
generated by the stock price process, and Q denotes the Risk Neutral Measure.

The concept of the stopping time and exercise time is described prior introducing
the problem formulation.

Definition 2.1. A random variable τ : Ω → [0,∞] is called a stopping time for the
filtration Ft if

{τ ≤ t} ≜ {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, for any t ≥ 0.

When t < T , Ft is a set of all events determined in the first t trading periods
where the price information is between [0, t].

American options provide option holders with the freedom to exercise the option
at any time before the expiration date. The holders are allowed to select the optimal
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exercise timing to maximize their benefits. Another approach to frame the problem
of American options is to reformulate the problem as an optimal control problem
in Problem 2.2. In this approach, the main objective is to solve the optimal control
problem, in order to obtain two crucial components, namely the optimal value (i.e.,
the American option value) and the optimal solution (i.e., the optimal exercise
boundary).

Problem 2.2. Optimal control problem of American option

max
τ∈Tt

V (t, St) = E
[
e−r(τ−t)(K − S(τ))+|Ft

]
,

s.t. dSt = rStdt+ σStdWt,

where T is the expiry time, and Ft ∈ [0, T ] is a set of all stopping times. K is
the strike price, indicating whether the option holder can buy or sell the stock when
exercising the option contract. E[.|.] is denoted as the conditional mathematical
expectations with the risk-neutral measure Q.

The optimal exercise strategy attempts to determine the optimal the stopping time
τ∗ in order to maximize V (t, St):

τ∗ = argmax
τ∈Tt

E
[
e−r(τ−t)(K − S(τ))+|Ft

]
.

The optimal stopping time coincides with the point where the stock price curve
first intersects the optimal exercise boundary. The maximum value of the American
option is attained. The optimal stopping time is defined as the first time when the
price process hits this boundary,

τ∗ = inf {τ ≥ t : Sτ = L∗(t)} ,

where L∗(t) is the optimal exercise boundary. i.e.,

Remark 2.3. When the time horizon T is infinite (T = +∞), Problem 2.2 can
be solved explicitly for perpetual American options. However, an explicit solution
is not available for non-perpetual options with a finite expiry (T < +∞), and
numerical methods must be employed. This paper primarily focuses on the case
where T < +∞.

Remark 2.4. The characteristic of stock prices is similar to the Markov process.
The future desired stock price depends only on the present stock price and is inde-
pendent to the historical price. Hence

E [Sq | Ft] = E [Sq | St] , ∀q ∈ [t, T ].

When the stock curve intersects with the exercise boundary, the point of inter-
section denoted by τ is the optimal stopping time. Hence, it is necessary to first
establish the optimal exercise boundary L∗(t) to determine the optimal stopping
time. Essentially, L∗(t) divides the area into two regions, namely the Holding area
and the Exercise area.

• Holding Area

Σ1 = {(St, t) | L∗(t) ≤ St < ∞, 0 ≤ t ≤ T} : V (St, t) > (K − St)
+.

• Exercise Area

Σ2 = {(St, t) | 0 ≤ St < L∗(t), 0 ≤ t ≤ T} : V (St, t) = (K − St)
+.
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For the optimal control problem of American put options, the free boundary L∗(t)
is determined numerically together with the solution of the Black-Scholes equation.
In order to characterize the optimal exercise policy, we need to find a solution pair
(V (S, t), L∗(t)). Once the boundary is determined, the holders of the American put
options make the exercise decisions based on the following rules:St ⩽ L∗(t), exercise the options
L∗(t) < St ≤ K, do not exercise the options and wait until the first hitting time
St ≥ K,do not exercise the options

We reformulate the optimal control problem of American options 2.2 into the
following linear differential complementarity problem 2.6. By solving the linear
differential complementarity problem, we can determine the solution of the optimal
control problem 2.2.

The linear complementarity problem (LCP) is defined as follows.

Definition 2.5. (LCP)[16]. Let w be a mapping w,Rn → Rn. Given w, a vector
z ∈ Rn can be obtained as

w = Mz + q, z ≥ 0, w ≥ 0, ziwi = 0, for i = 1, 2, . . . , n.

Problem 2.6. Linear differential complementarity problem of American
options

Determine V such that  LV ≥ 0
V − V ∗ ≥ 0
LV · (V − V ∗) = 0

in the region Ω := I × (0, T ), where I = (0, X) ⊂ R for a positive constant X > K.
L denotes the Black-Scholes differential operator

L := − ∂

∂t
− 1

2
σ2S2 ∂2

∂S2
− rS

∂

∂S
+ r, (1)

where S denotes the asset price, σ(t) is a known function characterizing the volatility
of the asset, and V ∗is the payoff function defined by V ∗(S) = max{K − S, 0}.

The final condition is given by

V (S, T ) = V ∗(S).

The boundary conditions are

V (0, t) = K,V (X, t) = 0.

Theorem 2.7. Let V (t, St) be the value of the American options, when the non-
arbitrage assumption is implied. The American option pricing problem can be for-
mally stated as the linear differential complementarity problem in Problem
2.6.

Proof of Theorem 2.7. Consider the Delta-hedging portfolio of a long American op-
tion position and a short position in some quantity ∆t of the stock

Πt = V (St, t)−∆tSt. (2)

The derivatives of (2) are

dΠt = dV (St, t)−∆tdSt, (3)

dΠt =
∂V

∂t
dt+

∂V

∂St
dSt +

1

2

∂2V

∂S2
t

dSt −∆trStdt−∆tσStdWt, (4)
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dΠt =

(
∂V

∂t
+ rSt

∂V

∂St
+

1

2
σ2S2

t

∂2V

∂S2
t

)
dt+ σSt

∂V

∂St
dwt −∆trStdt−∆tσStdwt.

To create a riskless portfolio, we choose ∆t = ∂V
∂S (St, t). The price movement of

portfolio assets after the risk hedging is defined as

dΠt =

(
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

)
dt.

• If dΠt > rΠtdt, the holder can arbitrage.
• If dΠt = rΠtdt, the holder has no chance to arbitrage. Hence,

V (St, t) > (k − St)
+
,(

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

)
· dt = r

(
V (t, St)−

∂V

∂St
· St

)
dt.

• If dΠt < Πtdt, the holder has the possibility to arbitrage. If it is optimal to
exercise, we do not have the arbitrage opportunity

V (St, t) = (k − St)
+
,(

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

)
· dt ⩽ r

(
V (t, St)−

∂V

∂St
· St

)
dt.

The above analysis can be summarized as
∂V
∂t + rSt

∂V
∂St

+ 1
2σ

2S2
t
∂2V
∂S2

t
− rV ⩽ 0

V (St, t)− (k − St)
+ ⩾ 0(

∂V
∂t + rSt

∂V
∂St

+ 1
2σ

2S2
t
∂2V
∂S2

t
− rV

)(
V (St, t)− (k − St)

+
)
= 0

(5)

By defining L as equation (18), equation (5) can be simplified as LV ≥ 0
V − V ∗ ≥ 0
LV · (V − V ∗) = 0

Determining the optimal exercise time for maximizing returns in American op-
tions is a more challenging task compared to European options. Indeed, the free
boundary is the borderline of the holding region and the exercise region. Theoretical
analysis proves that the graph of the free boundary is continuous and monotoni-
cally decreasing [18]. Remark 2.8 states the optimality conditions for the optimal
exercise strategy. In the following, we abbreviate St as x.

Remark 2.8. Conditions for Optimal Exercise Strategy
The free boundary and Optimal Exercise Strategy can be determined based on

the difference between the expression of the option value in the holding region Σ1

and the exercise region Σ2,
If LV = 0, V − V ∗ > 0, then (x, t) ∈ Σ1 and the option is not exercised,
If LV > 0, V − V ∗ = 0, then (x, t) ∈ Σ2 and the option is exercised.

The free boundary is essentially the boundary which separates the holding region
Σ1 and the exercise region Σ2.
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Fig. 1 illustrates the determination of the exercise boundary for Remark 2.8.
By analyzing the sign of LV and V − V ∗ in relation to 0, the exercise and holding
regions can be identified. Theorem 2.7 shows that the optimal control problem can
be solved after the solution of the LCP problem is obtained. As depicted in Figure
2, the optimal exercise boundary is the optimal solution to the optimal control
problem; the corresponding option value represents the optimal value.

(a) American put option

(b) American call option

Figure 1. Hold and exercise regions of American options

Remark 2.9. Wilmott [34] et al. proved that the American option pricing problem
can be formulated as the following variational inequality:

min{−LV, V − V ∗} = 0,
V (x, T ) = V ∗(x) = max{K − x, 0},
0 < t < T, (x, t) ∈ (0, X)× (0, T ).

(6)

The variational inequality (6) can also be solved by the proposed method in
Section 3, where the proposed novel NN method is integrated with the penalty
approach and the smoothing method to solve the linear differential complementarity
problem in problem 2.6.
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Figure 2. Problem Transformation

3. The novel NN method for the LCP.

3.1. Penalty approach and smoothing method. In this section, we first pro-
pose the penalty problem to approximate the linear differential complementarity
problem in Problem 2.6, and then apply the smoothing method to process the non-
differentiable part.

We define [a]+ = max{a, 0}, and then convert the two inequality constraint
LV ≥ 0 and V − V ∗ ≥ 0 into the nonlinear PDEs

LVλ(x, t) + λ [V ∗(x)− Vλ(x, t)]
1/k
+ = 0,

with the boundary and final conditions

Vλ(x, T ) = V ∗
λ (x), Vλ(0, t) = K,Vλ(X, t) = 0,

where λ is a penalty parameter which is a reasonably large number.
The equations of the original LCP problem can be approximated by the following

PDEs of the bi-nolinear system

LVλ(x, t) + λ [V ∗(x)− Vλ(x, t)]
1/k
+ = 0, (7)

LVλ · (Vλ − V ∗) = 0. (8)

Remark 3.1. The term [V ∗(x)− Vλ(x, t)]
1/k
+ is mainly used to penalize the positive

part of V ∗(x) − Vλ(x, t). If [V ∗(x)− Vλ(x, t)]+ is equal to 0, the two inequalities
V − V ∗ ≥ 0 and LV ≥ 0 are satisfied. If [V ∗(x)− Vλ(x, t)]+ is not equal to 0, then

the inequality V − V ∗ ≥ 0 is not satisfied. If [V ∗ − Vλ]+ = λ−k (−LVλ)
k
, it can

guarantee that [V ∗ − Vλ]+ ≈ 0 when λ is large enough.
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Problem 3.2. Determine Vλ(x, t) for all (x, t) ∈ Ω := (0, T )× I,

LVλ(x, t) + λ [V ∗(x)− Vλ(x, t)]
1/k
+ = 0,

LVλ · (Vλ − V ∗) = 0,

Vλ(x, T ) = V ∗(x) = max{K − x, 0},
Vλ(0, t) = K,

Vλ(X, t) = 0,

(9)

where λ is the penalty parameter.

Problem 3.2 has a unique solution, where we refer to [32] for proof of convergence.
The red line in Figure 3 shows that Vλ(x) is not differentiable at the point

x = K. Therefore, the smoothing technology is applied on the non-smooth function
Vλ(x) = max{K − x, 0} in the ε neighborhood of the unsmooth angle point x = K.
The function V is approximated as the smooth function V ε

λ .

Figure 3. Smoothing method

V ε
λ (x) :=


Vλ, x < K − ε,
(Vλ−ε)2

4 , K − ε ≤ x ≤ K + ε,

0, x > K + ε.

(10)

We refer to [29] for proof of convergence.

3.2. A novel neural networks algorithm. Unlike the traditional data-driven
methods, we propose a novel NN by incorporating the structural properties of PDE
with the training process. By minimizing a loss function, the neural network at-
tempts to model the PDE. Additionally, known data points can be easily incor-
porated into the loss function based on the structural properties of the PDE in
order to facilitate faster training and enhance the network performance. To solve
the bi-nolinear system of PDEs, we apply the simplest feed-forward neural network
method.
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3.2.1. Feed-forward neural neworks (FNNs). FNNs are the first and simplest artifi-
cial neural network [26]. Each layer of the FNN consists of multiple neurons, where
information flows exclusively from the input node to the output node through the
hidden node. This structural design enables FNNs to effectively handle sequence
data and time series tasks. As depicted in Fig. 4, each neuron receives signals from
neurons in the previous layer and generates outputs for the subsequent layer. By
incorporating the activation functions, FNNs are capable of modeling nonlinearity
and facilitating mapping tasks. In theory, it can approximate any continuous func-
tion [11]. Vθ in equation (11) is the neural network approximation of the solution

Figure 4. Feed-Forward Neural Nework

V .
Vθ(z) := WLσL

(
WL−1σL−1

(
· · ·σ1

(
W 0z + b0

)
· · ·
)
+ bL−1

)
+ bL, (11)

where WL and bL are the weight matrices and bias vectors, and z = [x, t]T . The
activation function σ plays a significant role in neural networks. Nonlinear activa-
tion functions are generally used to model nonlinear components. Therefore, the
neural network is able to approximate a wide range of nonlinear functions. There
are various popular activation functions utilized in neural networks, such as the
Sigmoid, ReLU, and Tanh functions.

The training of neural networks often involves the determination of the deriva-
tives of V with respect to the unknown parameters WL and bL. Gradient-based
optimization methods such as gradient descent are generally used to determine the
derivatives [6]. To simplify the gradient computation, automatic differentiation
(AD) techniques implemented in TensorFlow [27] or PyTorch [22] are widely used.
The AD techniques automatically compute the derivatives of the neural network
with respect to its inputs and parameters by the chain rule. The approach avoids
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manual gradient calculations. Hence, the training process is more efficient, espe-
cially when solving the PDEs.

As illustrated in Figure 5, the error function of the NN method is determined
by both the data points and PDEs. Indeed, the structural properties of PDEs are
added as the constraints to the neural network in order to ensure that the training
results satisfy the characteristics of the PDEs.

Figure 5. The error function of novel NNs relies on both data and
the PDE

The loss function ϕθ is formulated with the following three terms:

1. The mean squared error quantifies the averaged difference between the initial
and terminal conditions in a number of collocation points,

ϕ0
θ

(
X0
)
:=

1

N0

N0∑
i=1

∣∣uθ

(
x0
i , t

0
i

)
− u0

(
x0
i , t

0
i

)∣∣2 ,
ϕf
θ

(
Xf
)
:=

1

Nf

Nf∑
i=1

∣∣∣uθ

(
xf
i , t

f
i

)
− uf

(
xf
i , t

f
i

)∣∣∣2 ,
(12)

where

X0 :=
{(

x0
i , t

0
i

)}N0

i=1
⊂ I × 0, and Xf :=

{(
xf
i , t

f
i

)}Nf

i=1
⊂ I × T, (13)

and X0 and Xf denote the initial and termination points. The two equations
in (12) represent the mean squared error between the neural network approx-
imates and the true values at the initial and termination points, respectively.

2. The mean squared error quantifies the averaged difference between the upper
and lower boundary conditions in a number of collocation points,

ϕub
θ

(
Xub

)
: =

1

Nub

Nub∑
i=1

∣∣uθ

(
xub
i , tubi

)
− uub

(
xub
i , tubi

)∣∣2 ,
ϕlb
θ

(
X lb
)
: =

1

Nlb

Nlb∑
i=1

∣∣uθ

(
xlb
i , t

lb
i

)
− ulb

(
xlb
i , t

lb
i

)∣∣2 , (14)

Xub :=
{(

xub
i , tubi

)}Nub

i=1
⊂ 0× [0, T ], and X lb :=

{(
xlb
i , t

lb
i

)}Nlb

i=1
⊂ X × [0, T ], (15)

where Xub and X lb represent the upper and lower boundary points. The
two equations in (14) represent the mean squared errors, which quantify the
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differences between the function u approximated by the neural network and
the true value at upper and lower boundary points, respectively.

3. The mean squared error of inner allocation point

ϕr
θ (X

r) :=
1

Nr

Nr∑
i=1

(
∣∣r1θ (xr

i , t
r
i )
∣∣2 + ∣∣r2θ (xr

i , t
r
i )
∣∣2), (16)

in which Xr := {(xr
i , t

r
i )}

Nr

i=1 ⊂ I × (0, T ), and r1θ(x, t) and r2θ(x, t) denote the
residuals of the bi-nonlinear PDEs which are given as

r1θ(x, t) : = LVλ(x, t) + λ [V ∗(x)− Vλ(x, t)]
1/k
+ ,

r2θ(x, t) : = LVλ · (Vλ − V ∗) ,
(17)

where

L := − ∂

∂t
− 1

2
σ2x2 ∂2

∂x2
− rx

∂

∂x
+ r. (18)

Incorporating the above three errors, the unknown parameters of the NN are
trained by minimizing the loss function

ϕθ(X) := ϕr
θ (X

r) + ϕ0
θ

(
X0
)
+ ϕf

θ

(
Xf
)
+ ϕub

θ

(
Xub

)
+ ϕlb

θ

(
X lb
)
, (19)

where X denotes the collection of training data including the inner points Xr, the
initial points X0, the termination points Xf , and the boundary points X lb and
Xub.

3.2.2. Numerical algorithm for optimal control problems. Algorithm 1 demonstrates
the utilization of the novel NN method to solve the LCP. This method relies mainly
on the scientific computing library NumPy and the machine learning library Ten-
sorFlow. The process of determining the numerical solution to the optimal control
problem is summarized in Figure 6. Initially, we convert the optimal control problem
associated with American options into a LCP. We then employ a penalty approach
and smoothing method to transform the problem as a solution for a bi-nonlinear
PDE. Consequently, we solve this PDE using the the novel NN method. By com-
bining the structural properties of the PDE equation and the information of the
sampling points, we evaluate the the overall mean squared error in (19). The un-
known parameters in the neural networks are trained to approximate the solution
of the LCP. The numerical solution to the optimal control problem of American
options can be obtained.

Here is the neural network configuration which was used to solve this LCP:

- Scale the input in the interval [-1,1];
- Fully connected layers;
- Activation function: Tanh, σ(x) = tanh(x) = 2

1+e−2x − 1;
- Number of layers, L = 2 or 4;
- Number of neurons in the neural network, D = 4 or 8.

Remark 3.3. There is no fixed rule to determine the optimal numbers of hidden
nodes and layers in a neural network, which depend on the complexity and landscape
of the problem being addressed. Hence, the trial and error method is used to
determine the optimal neural network configuration.
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Algorithm 1 Solving the LCP by the novel NN method

1: Input: Number of layers, L; Number of neurons in the neural network, D;
Maximum number of training iterations, Imax; The learning rate, lr;

2: Output: Option value: V ;
3: Generate a set of collocation points. Generate the inner points Xr, the initial

points X0, the boundary points Xub and X lb and the finial points Xf by uni-
formly distributed random number generations.

4: Determine the gradient and loss values:

• Compute the partial derivatives ∂V
∂t ,

∂V
∂x ,

∂V 2

∂t2 , and ∂V 2

∂x2 by automatic
differentiation (AD) capabilities;

• Compute the mean squared residual ϕr
θ (X

r), ϕ0
θ

(
X0
)
, ϕf

θ

(
Xf
)
,

ϕub
θ

(
Xub

)
, and ϕlb

θ

(
X lb
)
, by equations (16),(12), (13), and (14).

• Evaluate the LCP residual by equation (19).

5: Set up the optimizer and train the NN:

• Set the learning rate lr to the step function which decays in a piecewise
constant fashion;

• Update the NN weights using the Adam optimizer.

6: Return: The optimized parameters WL, bL of the NN, and the option value
V .

Figure 6. Flow of solving the optimal control problem of Ameri-
can options

4. Numerical results. In this section, we present three numerical examples to
demonstrate the efficiency and usefulness of the proposed NN method.
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In the first example, we demonstrate the effectiveness of the proposed NN method
to solve the LCP. We consider a test LCP example with unsymmetric system ma-
trices. By comparing the numerical solutions obtained by the proposed NN method
and those presented in Test 1 of Wang’s article [33], we can confirm that the pro-
posed NN is an effective approach to solve the LCP. For the second and third
examples, we solve the optimal control problems for American call and put options,
respectively. The results are compared with those presented in [31] and [32]. The
effectiveness of the proposed NN method-based algorithm for solving the American
option optimal control problem can be further demonstrated. The proposed NN
method is implemented in a Python environment with TensorFlow. All the com-
putations are performed on a Macbook Pro equipped with a Apple M1 Max-Core
processor and 64G of RAM.

4.1. Example 1. The LCP with un-symmetric system matrices in [33]

L1u ≤ f,

L2u ≤ u∗,

(L1u− f) · (L2u− u∗) = 0,

(20)

is considered, where

L1 = −
(

∂2

∂x2
+

∂2

∂y2

)
+

∂

∂x
+

∂

∂y
,L2 = I,

f = 5
[
6xy

(
2− x2 − y2

)
+
(
1− 3x2

) (
y − y3

)
+
(
1− 3y2

) (
x− x3

)]
,

u∗ = 0.3 + |x− 0.5|+ |y − 0.5|,

(21)

(x, y) ∈ Ω := (0, 1)× (0, 1), u = 0 on the boundary of Ω, and I denotes the identity
operator. For the unconstrained condition L1u ≤ f , the exact solution of L1u = f
is u = 5(x− x3)(y − y3).

Figure 7. The value of u
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Figure 8. The value of u and constraint conditions

Figure 9. Positions of collocation points

We solve this problem by the proposed method. After performing several trials,
we found that the neural network with 4 hidden layers and 8 neurons in each
hidden layer is able to achieve better results. To optimize the learning process, we



3808 JIAO TENG, KIT YAN CHAN AND KA FAI CEDRIC YIU

Figure 10. The convergence plots for the loss function

choose a piecewise decay of the learning rate. Specifically, the learning rate was
set to 0.001 for the first 7000 steps, followed by a rate of 0.0001 from step 7000 to
40,000, and finally 0.00001 from step 40,000 onwards. Figure 7 shows the results
of the numerical solution u. To further demonstrate the effectiveness of addressing
the inequality constraints, we plot the planes corresponding to the two inequality
equations separately in Figure 8. The green and orange surfaces represent L1u = f
and L2u = u∗, respectively. The blue surfaces represent the numerical solution of
u. Notably, the blue region is consistently below the green and orange sub-planes.
This result validates that u satisfies the inequality constraint of the LCP.

By comparing the calculation results with Test 1 in Wang’s article [33], the
numerical solution is consistent with the solution of Wang’s article. This consistency
indicates that the proposed Novel NN method is able to solve the LCP accurately.
In contrast, the existing method proposed in [33] requires a complex transformation
of the LCP to an alternative form; this complex transformation can be omitted by
the proposed NN. This complex transformation is essential for the existing method
and requires ongoing modification with different LCP. Hence, it is apparent that
the existing method has no generalizability [33].

As a combination of data-driven and structural properties-driven methods, the
quality of the dataset plays a critical role in the success of training. The results
of training are also influenced by the dataset’s accuracy on each constraint bound-
ary. In this example, we use the built-in function tf.random.uniform() in the
TensorFlow library to generate a specified number of random points in a uniform
distribution. To satisfy the boundary condition u = 0 on the boundary of Ω, we
choose 100 points on each of the top, bottom, left, and right boundaries. Addi-
tionally, we randomly select 500 points within the interior of Ω with a uniform
distribution. Figure 9 shows the distribution of the randomly sampled points, while
Figure 10 shows the convergence curve of the cost function. To emphasize the re-
duction in the value function, we present enlarged results of certain iteration steps
as subplots within Figure 10. The first three subplots clearly show the loss values
decrease significantly. The last subplot shows that the loss values converge to the
order of 1e-2 when the number of iterations increases.
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4.2. Example 2. In this example, we solve the American call option test problem
in [31] by the proposed NN. For American call options, it is not wise to exercise
the option early. Hence, the optimal exercise time is the termination moment, and
determination of the option value is necessary.

Call option: Let V denote the value of the call option, and x the price of the
underlying asset. V satisfies the Black–Scholes equation

LV := −∂V

∂t
− 1

2
σ2(t)x2 ∂

2V

∂x2
− (r(t)x−D(x, t))

∂V

∂x
+ rV = 0, (22)

where (x, t) ∈ I × [0, T ) with I = [0, X]. The boundary conditions and the final
condition are given as (23) and (24), respectively.

V (0, t) = 0,

V (X, t) = X exp

(
−
∫ T

t

d(X, τ)dτ

)
− E exp

(
−
∫ T

t

r(τ)dτ

)
,

(23)

V (x, T ) = max(0, x− E), x ∈ Ī . (24)

The parameters are set as, X = 700, T = 1, r = 0.1, σ = 0.3, d = 0.04, and E = 400.
The NN has two hidden layers, and the numbers of hidden nodes in the two

layers are 2 and 4. We choose a piecewise decay of the learning rate. The first
10,000 steps use a learning rate of 0.05; a learning rate of 0.005 is used from steps
10,000 to 25,000; a learning rate of 0.001 is used from steps 25,000 to 40,000; and
a learning rate of 0.0005 is used from step 40,000 onwards.

In this example, we use the built-in function tf.random.uniform() in the Ten-
sorflow library to generate a specified number of random points in a uniform dis-
tribution. Given the boundary conditions in (23) and the final condition in (24),
50 points are distributed at the left and right boundaries of Ω, 200 points are dis-
tributed at the top boundary of Ω, and 2000 points are distributed in the interior
of Ω with uniform randomness. Figure 11 shows the stochastic distribution of the
collocation points.

Figure 11. Positions of collocation points
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Figure 12. The value of the option value V

Figure 12 shows the value of the option value V . By comparing the existing result
which is illustrated in Test 1 in [31], it was found that the results obtained by the
proposed novel NN method are consistent with the existing results. However, the
advantage of the novel NN method is that it does not require the complicated process
which has been implemented in discretization and transformation of the problem.
Additionally, we can solve this more complicated American call option test problem
with minimal modifications to the program which has been implemented to solve the
simpler problem in Example 1. Therefore, we can solve similar structured problems
without significant modification to the original program, although solving the more
complicated problem is required.

4.3. Example 3. In this example, we solve the LCP which is transformed by the
optimal control problem of American put option. The following parameters are
used: X = 100, T = 1.5, r = 0.03, σ = 0.4, and K = 50.

In order to solve this problem by the proposed method, 80 random points are
distributed on both the upper and lower boundaries. Additionally, 80 and 500
points are selected for the final region and the middle region respectively. Figure 13
illustrates that the points are randomly distributed on the boundaries and in the
middle region.

After several trials, better results can be achieved by setting the penalty param-
eter as λ = −2 and the smoothing coefficient as ε = 6. By applying these values,
the transformed LCP for Problem 3.2 can be solved by using the proposed numer-
ical method efficiently. After performing many trials, we found that the proposed
neural network is able to achieve better results when the following neural network
configuration and learning rates are used: 8 neurons per layer and 4 hidden layers,



SOLVING AMERICAN OPTION OPTIMAL CONTROL WITH NEURAL NETWORK 3811

Figure 13. American put option value

Figure 14. American put option value

learning rate of 0.001 for the first 15000 steps, a learning rate of 0.0001 from steps
15,000 to 35,000, and a learning rate of 0.0001 from step 35,000 onwards.

Figures 14 and 15 show the value of the American put option price, which is
the optimal value of the optimal control problem. Figure 14 includes the option
value along with the payoff, which can be used to identify the exercise boundary by
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Figure 15. American put option value/optimal values of the op-
timal control problem

Figure 16. The value of V − V ∗
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Figure 17. The contour view of V − V ∗

Figure 18. The convergence plots for the loss function

observing the intersection line. For this optimal control problem, this intersection
line indicates the optimal solution. By performing the computation in the regions
on both sides of the line, it can be found that the equality V −V ∗ = 0 is satisfactory
within the left region when LV > 0. In the right region, LV = 0, V − V ∗ > 0 is
satisfactory. Figure 16 presents the value of V −V ∗, where the solid part represents
the holding area and the dotted part represents the exercise area. According to
Condition 2.8, the intersection of the holding area and exercise area corresponds to
the optimal exercise boundary. In addition, the contour view of V −V ∗ is presented
in Figure 17 to show the optimal exercise boundary, where the star sign denoting the
optimal exercise boundary is consistent with that of Figure 14. Furthermore, Figure
18 shows the values of the loss function. When the training process progresses, the
value of the loss function decreases and converges to the order of 10e-2. The two
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upper subplots in Figure 18 provide an enlarged view of the certain iteration steps.
The upper left subplot shows the decreasing trend more clearly, while the upper
right subplot shows that the loss values converge to the order of 1e-2 when the
number of iteration steps increases.

5. Conclusion. In conclusion, the proposed novel NN method offers a valuable
and practical approach to solving the American option optimal control problem.
By reformulating the problem as the solution of PDEs in the bi-nonlinear system of
PDEs and employing neural networks to approximate the PDE solutions, we have
demonstrated the effectiveness of our method in providing optimal exercise strate-
gies and option values for American options. This method on the financial market
is significant as it offers a more efficient and accurate way to solve American option
problems compared to existing methods. This can lead to better decision-making in
financial trading and risk management, ultimately contributing to improved market
efficiency and stability. Looking ahead, future research can explore the application
of the novel NN method to other financial derivatives and risk management prob-
lems. Additionally, potential improvements in the method, such as incorporating
additional market factors or refining the neural network architecture, can further
enhance its applicability and accuracy in real-world financial situations.
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