Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108948
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorGao, M-
dc.creatorYiu, KFC-
dc.date.accessioned2024-09-11T08:33:50Z-
dc.date.available2024-09-11T08:33:50Z-
dc.identifier.issn0018-9448-
dc.identifier.urihttp://hdl.handle.net/10397/108948-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication M. Gao and K. -F. C. Yiu, "Asymptotic Behaviors and Confidence Intervals for the Number of Operating Sensors in a Sensor Network," in IEEE Transactions on Information Theory, vol. 69, no. 1, pp. 548-560, Jan. 2023 is available at https://doi.org/10.1109/TIT.2022.3222617.en_US
dc.subjectAsymptotic behavioren_US
dc.subjectAsymptotic normalityen_US
dc.subjectConfidence intervalen_US
dc.subjectGood-turing estimatoren_US
dc.subjectModerate deviationen_US
dc.subjectSensor networken_US
dc.titleAsymptotic behaviors and confidence intervals for the number of operating sensors in a sensor networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage548-
dc.identifier.epage560-
dc.identifier.volume69-
dc.identifier.issue1-
dc.identifier.doi10.1109/TIT.2022.3222617-
dcterms.abstractIn this paper, we study asymptotic behaviors of an estimator of the number of operating sensors in a sensor network based on the Good-Turing estimator. The asymptotic normality, some moderate deviations and deviation inequalities of the estimator are obtained. Our approach is based on the tail probability estimates and moderate deviations for occupancy problems. Applying these asymptotic behaviors, we give a performance analysis for the estimator of the number N of operating nodes when the deviations of the estimator are in (√N , o(N )). These estimates also provide a method to build confidence interval of N.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on information theory, Jan. 2023, v. 69, no. 1, p. 548-560-
dcterms.isPartOfIEEE transactions on information theory-
dcterms.issued2023-01-
dc.identifier.scopus2-s2.0-85142779868-
dc.identifier.eissn1557-9654-
dc.description.validate202409 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3186aen_US
dc.identifier.SubFormID49741en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Gao_Asymptotic_Behaviors_Confidence.pdfPre-Published version906.15 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

59
Citations as of Nov 10, 2025

Downloads

28
Citations as of Nov 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.