Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108932
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorMainland Development Officeen_US
dc.creatorDang, Zen_US
dc.creatorGuo, Fen_US
dc.creatorDuan, Hen_US
dc.creatorZhao, Qen_US
dc.creatorFu, Yen_US
dc.creatorJie, Wen_US
dc.creatorJin, Ken_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-09-11T01:32:24Z-
dc.date.available2024-09-11T01:32:24Z-
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10397/108932-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2023 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © 2023 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.3c01687.en_US
dc.subject2D semiconductorsen_US
dc.subjectFerroelectric polymeren_US
dc.subjectNeuromorphic computingen_US
dc.subjectNonvolatile memory devicesen_US
dc.subjectSynaptic transistorsen_US
dc.titleBlack phosphorus/ferroelectric P(VDF-TrFE) field-effect transistors with high mobility for energy-efficient artificial synapse in high-accuracy neuromorphic computingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage6752en_US
dc.identifier.epage6759en_US
dc.identifier.volume23en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1021/acs.nanolett.3c01687en_US
dcterms.abstractThe neuromorphic system is an attractive platform for next-generation computing with low power and fast speed to emulate knowledge-based learning. Here, we design ferroelectric-tuned synaptic transistors by integrating 2D black phosphorus (BP) with a flexible ferroelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Through nonvolatile ferroelectric polarization, the P(VDF-TrFE)/BP synaptic transistors show a high mobility value of 900 cm2 V–1 s–1 with a 103 on/off current ratio and can operate with low energy consumption down to the femtojoule level (∼40 fJ). Reliable and programmable synaptic behaviors have been demonstrated, including paired-pulse facilitation, long-term depression, and potentiation. The biological memory consolidation process is emulated through ferroelectric gate-sensitive neuromorphic behaviors. Inspiringly, the artificial neural network is simulated for handwritten digit recognition, achieving a high recognition accuracy of 93.6%. These findings highlight the prospects of 2D ferroelectric field-effect transistors as ideal building blocks for high-performance neuromorphic networks.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano letters, 26 July 2023, v. 23, no. 14, p. 6752-6759en_US
dcterms.isPartOfNano lettersen_US
dcterms.issued2023-07-26-
dc.identifier.scopus2-s2.0-85163583759-
dc.identifier.eissn1530-6992en_US
dc.description.validate202409 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3184-
dc.identifier.SubFormID49746-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dang_Black_Phosphorusferroelectric_P(VDF-TrFE).pdfPre-Published version3.82 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

65
Citations as of Nov 10, 2025

Downloads

148
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

58
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.